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PREFACE.

TrE following book, which embodies the results of my own
’experience in teaching the Calculus at Cornell and Harvard
- Universities, is intended for a text-book, and not for an

exhaustive treatise.

Its peculiarities are the rigorous use of the Doctrine of
Limits as a foundation of the subject, and as preliminary
to the adoption of the more direct and practically convenient

+ infinitesimal nofation and nomenclature ; the early introduc-
tion of a few simple formulas and methods for integrating ;
a rather elaborate treatment of the use of infinitesimals in
pure geometry; and the attempt to excite and keep up the
interest of the student by bringing in throughout the whole
book, and not merely at the end, numerous applications to
practical problems in geometry and mechanics.

I am greatly indebted to Prof. J. M. Peirce, from whose
lectures I have derived many suggestions, and to the works
of Benjamin Peirce, Todhunter, Duhamel, and Bertrand, upon

which I have drawn freely.
W. E. BYERLY.

CAMBRIDGE, October, 1879. : R
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DIFFERENTIAL CALCULUS.

CHAPTER 1.
INTRODUCTION.

1. A variable quantity, or simply a variable, is a quantity
which, under the conditions of the problem into which it enters,
is susceptible of an indefinite number of values.

A constant quantity, or simply a constant, is a quantity which
has a fixed: value.

For example ; in the equation of a circle

w’+y’=a’,

« and y are variables, as they stand for the codrdinates of any
point of the circle, and so may have any values consistent with
that fact ; that is, they may have an unlimited number of different
values; a is a constant, since it represents the radius of the
circle, and has therefore a fixed value. Of course, any given
number is a constant.

2. When one quantity depends upon another for its value, so
that a change in the second produces a change in the first, the
first is called a function of the second. 1If, as is generally the
case, the two guantities in question are so related that a change
in either produces a change in the other, either may be regarded
a8 a function of the other. The one of which the other is
considered a function. is called the independent variable, or
simply the variable.
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For example ; if « and y are two variables connected by the

relation
y=2a",

we may regard & as the independent variable, and then y will
be a function of z, for any change in  produces a corresponding
change in its square; or we may regard y as the independent
variable, and then  will be a function of y, and from that point
of view the relation would be more naturally written

z=Vy.
Again, suppose the relation is
y=sinz,

we may either regard y as a function of x, in which case we
should naturally write the relation as above, or we may regard =
as a function of y, and then we should more naturally express

the same relation by
z=s8in"ly,

i.e., z is equal to the angle whose sine is y.

3. Functional dependence is usually indicated by the letters
Sy F, and ¢. Thus we may indicate that y is a function of «
by writing

y=Jr, ory=Fz, or y=gpx;
and in each of these expressions the letter f, F, or ¢ is not an
algebraic quantity, but a mere symbol or abbreviation for the
word function, and the equation is precisely equivalent to the
sentence, y depends upon x for its value, so that a change in the
value of x will necessarily produce a change in the value of y.

4. The difference between any two values of a variable is
called an increment of the variable, since it may be regarded as
the amount that must be added to the first value to produce the
second. An increment is denoted by writing the letter 4 before
the variable in question. Thus the difference between two val-
ues of a variable x would be written 4z, 4 being merely a sym-




CHaP. L.] INTRODUCTION. 3

bol for the word increment, and the expression 4z representing
a single quantity. It is to be noted that as an increment is a
difference, it may be either positive or negative.

5. If a variable which changes its value according to some
law can be made to approach some fived, constant value as
nearly as we please, but can never become equal to it, the con-
stant is called the limit of the variable under the circumstances
in question.

6. For example ; the limit of %, a8 n increases indefinitely, is
zero ; for by making n sufficiently great we can evidently de-

crease 1 at pleasure, but we can never make it absolutely zero.-
n

The sum of = terms of the geometrical progression 1, 1, }, 4,
&c., is a variable that changes as n changes, and if n is in-
creased at pleasure, the sum will have 2 for its limit; for, by the
formula for the sum of a geometrical progression,

art—a
8= .
r—1
In this case, S=m=—
1_y 1
2

By increasing n, -él: can be made as small as we please, but can-

not become absolutely zero; the numerator can then be made to
approach the value 1 as nearly as we please, and the limit of the
value of the fraction is obviously 2.

We say, then, that the limit of the sum of » terms of the pro-
gression 1, 3, }, 3, &c., as n increases tndefinitely, is 2.

In both of these examples the variable increases towards its
limit, but remains always less than its limit. This, however, is
not always the case. The variable may decrease towards its
limit remaining always greater than the limit, or in approach-
ing its limit, it may be sometimes greater and sometimes less
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than the limit. Take, for example, the sum of n terms of the
progression 1, — %, }, — &, %, &c., where the ratio is —3.
Here the limit of the sum as n increases indefinitely, is 4. Let
n start with the value 1 and increase ; when

n=1, s=1,

and is greater than the limit %; when

n=2,8=4%,

and is less than %, but is nearer § than 1 was; when
n=3,8=4%,

and is greater than % ; when
n=4,3=4,

and is less than £ ; and as n increases, the values of s are alter-
nately greater and less than the limit £, but each value of s is
nearer # than the value before it.

7. It follows immediately from the definition of a limit, that the
difference between a variable and its limit s itself a variable
which has zero for its limit, and in order to prove that a given
constant is the limit of a particular variable, it will always suf-
fice'to show that the difference between the two has the limit
zero. :

For example; it is shown in elementary geometry that the
difference between the area of any circle and the area of the
inscribed or circumscribed regular polygon can be made as small
as we please by increasing the number of sides of the polygon,
and this difference evidently can never become absolutely zero.
The area of a circle is then the limit of the area of the regular
inscribed or circumscribed polygon as the number of sides of the
polygon is indefinitely increased.

It is also shown in geometry, that the difference between the
length of the circumference of a circle and the length of the
perimeter of the regular inscribed or circumscribed polygon can
be decreased indefinitely by increasing at pleasure the number
of sides of the polygon, and this difference evidently can never
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become zero. The length of the circumference of a circle is
then the limit of the length of the perimeter of the regular in-
scribed or circumscribed polygon as the number of sides of the
latter is indefinitely increased.

8. The fundamental proposition in the theory of limits is the
following

THEOREM. — If two variables are so related that as they change
they keep always equal to each other, and each approaches a limit,
their limits are absolutely equal.

For two variables so related that they are always equal form
but a single varying value, as at any instant of their change
they are by hypothesis absolutely the same. A single varying
value cannot be made to approach at the same time two different
constant values as nearly as we please ; for, if it could, it could
eventually be made to assume a value between the two constants ;
and, after that, in approaching one it would recede from the
other.

9. As an example of the use of this principle, let us prove
that the area of a circle is one-half the product of the length of
its radius by the length of its circumference.

Circumscribe about the circle any regular polygon, and join its
vertices with the centre of the circle, thus divid-
ing it into a set of triangles, each having for its
base a side of the polygon, and for its altitude
the radius of the circle. The area of each
triangle is one-half the product of its base by the
radius. The sum of these areas, or the area of
the polygon, is one-half the length of the radius
by the sum of the lengths of the sides, that is, by the length
of the perimeter of the polygon. If A'is the area, and P the
perimeter of the polygon, and R the radius of the circle, we
have

A'=3RP;

a relation that holds, no matter what the number of sides of
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the polygon. A' and 3 RP evidently change as we change the
" number of sides of the polygon; they are then two variables so
related that, as they change, they keep always equal to each
other. As the number of sides of the polygon is indefinitely
increased, A' has the area of the circle as its limit; P has the
circumference of the circle as its limit. Let A be the area and
C the circumference of the circle ; then the

limit 4'= A4,
and the limit } RP= } RC.
By the Theorem of Limits these limits must be absolutely equal ;

.. A=3RC. Q.E.D.

10. It is of the utmost importance that the student should
have a perfectly clear idea of a limit, as it 18 by the aid of this
idea that many of the fundamental conceptions of mechanics
and geometry can be most clearly realized in thought.

11. Let us consider briefly the subject of the velocity of a
moving body.

The mean wvelocity of a moving body, during any period of
time considered, is the quotient obtained by dividing the dis-
tance traversed by the body in the given period by the length
of the period, the distance being expressed in terms of a unit
of length, and the length of the period in terms of some unit of
time. :

If, for example, a body travels 60 feet in 3 seconds, its mean
velocity during that period is said to be &2, or 20; and the
body is said to move at the mean rate of 20 feet per second.

The velocity of a moving body is uniform when its mean ve-
locity is the same whatever the length of the period considered.

The actual wvelocity of a moving body at any instant, is the
limit which the body’s mean wvelocity during the period imme-
diately succeeding the instant in question approaches as the
length of the period is indefinitely decreased. In the case of
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uniform velocity, the actual velocity at any instant is obviously
the same as the actual velocity at any other instant.

If the actual velocity of a moving body is continually changing,
the body is said to move with a variable velocity.

12. If the law governing the motion of a moving body can
be formulated so as to express the distance traversed by the
body in any given time as a function of the time, we can indicate
the actual velocity at any instant very simply by the aid of the
increment notation already explained. Represent the distance
by s and the time by ¢. Then we have

s=ft.

Suppose we want to find the actual velocity at the end of ¢,
seconds. Let 4t be any arbitrary period immediately succeeding
the end of ¢ seconds (it can fairly be considered an increment
as we really increase the time during which the body is sup-
posed to have moved by 4¢ seconds), and let 4s be the distance
traversed in that period. Then, by definition, the mean velocity
during the period 4t is %t‘! , and the actual velocity desired is the
limit approached by this ratio as 4¢ approaches zero. We shall
indicate this by

limit | 48
4t=0 [At ’

which is to be read ‘‘the limit of Js divided by 4¢, as 4t ap-
proaches zero” ; the sign = standing for the word approaches.

13. Take a numerical example. In the case of a body falling
freely in a vacuum near the surface of the earth, the relation
connecting the distance fallen with the time is nearly

s=16¢,

8 being expressed in feet and ¢ in seconds; required, the actual
velocity of a falling body at the end of ¢, seconds. Let 4t seconds
be an arbitrary period immediately after the end of ¢, seconds,
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then in to+ 4t seconds
the body would fall 16 (%, + 4t)* feet,
or 16t2 + 32¢, 4t 416 (4¢)? feet.
In ¢, seconds it falls 16 ¢ feet, so that in the period J¢ in question,
it would fall 16¢2 + 32¢, 4t + 16 (4t)*—16¢; feet,
or 32¢, 4t + 16 (4t)? ‘ feet,
which must therefore be Js. If v, be the required actual velocity,
Vo= }1{“:2) [—34:], by Art. 12.
48 _ 32t, 4t 416 (At)’_
s =32h+164,
d obviousl limit [ 48] _ g5,
an y dt=0| 4 .
Hence v = 821y,

the result required ; and in general, the velocity v at the end of ¢

seconds is
v =32¢.

14. Let us now consider a geometrical problem: To find the
direction of the tangent at any point of a given curve.

The tangent to a curve, at any given point, is the line with
which the secant through the given point and any second point
of the curve, tends to coincide as the second point is brought
indefinitely near the first. In other words, its position is the
limiting position of the secant line as the second point of inter-
section approaches the first, i.e., a position that the secant line
can be made to approach as nearly as we please, but cannot
actually assume.

15. Suppose we have the equation of a curve in rectangular
coordinates, and wish to find the angle = that the tangent at a
given point (2,y,) of the curve makes with the axis of X ; that
is, what is called the inclination of the curve to the axis of X.
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The equation of the curve enables us to express y in terms of
@, that is, as a function of . We have then

y=sr.

/

Ay

Let % + dx

be the abscissa of any second point P of the curve, and

Yo+ dy

the corresponding ordinate. If ¢ is the angle which the secant
through P, and P makes with the axis of X, it is clear from the

figure that tan ¢ = %

As P approaches P,, that is, as 4z decreases toward zero, ¢
evidently approaches r as its limit, and tan ¢ of course ap-
proaches indefinitely tanz. Hence, by the fundamental theo-
rem of limits (Art. 8),

_ limit
anT= o [Az]

16. Take a particular example. To find the inclination 7, to
the axis of X, of the parabola

¥=2mz

at the point (xy,%,) of the curve.
If the abscissa of P is x, 4 4z, its ordmate Yo + 4y must be

[2m 2+ 42)],
as is clear from the equation of the curve, which may be written

y=+/(2mz).
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Yo=+/(2mz,),
dy must be VI2m (2 + 42)] — /(2ma).

Ay _ V[2m (z+45)] — (2mz) .
4z dx

or, multiplying numerator and denominator by

VI2m (2 + dz) ] + +/(2mazy)
to rationalize the numerator,

dy 2m (%+ 4z) — 2ma,
da” dz §J[2m (Tt dz) ]+ ~/(2man)}
To= limit .A_:'! = 2m = m = ﬂ'
‘f“d B0 T0= fpmg [Jz] 2V(@2mz)  (2mz) Y

At any point (2,y) of the parabola we should have

tan 1’=ﬂ.
y

At the extremity of the latus rectum, i.e., at the point (—’22, m),

mﬂf=ﬁ=1,
m

and = 45°,

a familiar property of the parabola.:

17. Each of the problems we have just considered has re-
quired for its solution the investigation of the limit approached
by the ratio of corresponding increments of a function and of
the variable on which it depends, as the increment of the inde-
pendent variable approaches zero. Such a limit is called a de-
rivative, or a differential coefficient, and the study of its form
and properties is the fundamental object of the Differential Cal-
culus.
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CHAPTER II.
DIFFERENTIATION OF ALGEBRAIC FUNCTIONS.

18. If y is a function of =z, the limit of the ratio of an incre-
ment of y to the corresponding increment of X, as the increment
of x approaches zero, is called the derivative of y with respect to
X, and is indicated by D,y, D, being merely an abbreviation for
derivative with respect to x.* For any particular value of z, this
limit, as we shall see, will, in general, have a perfectly definite
value; but it will change in value as z changes; that is, the
derivative will, in general, be a new function of .

Since our definition of derivative requires that y should be a
function of z, that is, should change when % changes, it follows
that a constant can have no derivative; and if we attempt to
find the derivative of a constant by the method which we should
use if it were a function of x, we shall be led to this same con-
clusion. Let a be any constant; then the increment produced
in a, by giving & any increment, is absolutely 0; the ratio of
this increment to the increment of  must then be 0 ; and as this
ratio is always 0, its limit, when we suppose the increment of z
to decrease, must be 0. Therefore

D,a=0. 1]

19. The general method of finding the derivative of any given
JSunction of x, is immediately suggested by the definition of a de-
rivative. Take two values of z, 2, and 2, + 4z, and find the
corresponding values of the given function; the difference be-
tween them is obviously the increment of the function, corre-
sponding to the increment 4 of #. The limit of the ratio of the

* The names differential coeficient and derived function, and the notation dy in
place of Dry, are also in common use dz
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two 1ncrements, as dx approaches zero, will be the value of the
derivative for the particular value @, of «, and we may indicate
it by [D.yle=z, As x, was taken at the start as any value
of z, the subscripts may be dropped in the result, and the de-
rivative will then be expressed as an ordinary function of x.
The method may be formulated as follows: —

(D)= I [ﬂ%)—m} [1]

The student will observe that, in the problems in Arts. 13 and 16,
we -have really found D, (16¢*) and D, (V2mz) by the method
just described.

ExamMpLES.
Find

M) D.20); ) D)5 @) Dif3)s ) D.(a)s
by the general method.

1 1
Ans. (1) 20, (2) 3:6’, (3) —?7 (4) m.

20. In order to deal readily with problems into which deriva-
tives enter, it is desirable to work out a complete set of formu-
las, or rules for finding the derivatives of ordinary functions;
and it will be well to begin by roughly classifying functions.

The functions ordinarily considered are : —

(1) Algebraic Functions: those in which the only -operations
performed upon the variable, are the ordinary algebraic opera-
tions, namely : Addition, Subtraction, Multiplication, Division,
Involution, and Evolution.

Ezample. 32 43 (x—1).

(2) * Logarithmic Functions: those involving a logarithm of
the variable, or of a function of the variable.

Examples. xlogx;
log («® — ax + b).
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(3) Exzxponential Functions: those in which the variable, or
a function of the variable, appears as an exponent.

Ezxample. av@—2),

(4) Trigonoinetric Functions :
Ezample. cos x — sin?x.

21. We shall consider first, the differentiation* of Algebraic
Functions of x.

Required D, (ax) where a is a constant.
By the general method (Art. 19),

(D], = it [t ) =05 tmiy [e]

dx dx=0
= s [ =0;
. D, (ax)=a. [1]
If a =1, this becomes D,x=1. [2]

Required D,x" where n is a positive integer.

) limit [ (% + Jo)* — oo
(D2 )o=2,= g [—_ﬂ_]

By the Binomial Theorem,
(%ot o) "= 2" + na* 1w 4- ’&2—_1) 2"~ (J2)i . . 4 (dz)”

(%+J/2n_%n=n%"_l+n(n 1) o =ta .. 4 (Jz)

Each term after the first contains 4z as a factor, and therefore
has zero for its limit as dx approaches zero, so that

limit | %o+ d@)"—2]
Aw-.ao[ dz = natl

<o [Dae]pmpy= nag

* To differentiate is to find the derivative.



14 DIFFERENTIAL CALCULUS. [ART. 22.

As x, is any value of #, we may drop the subscript, and we have

D,2" = na*-, [3]

22. We shall next consider complex functions composed of
two or more functions connected by algebraic operations ; the
sum of several functions, the product of functions, the quotient
of functions.

Required the derivative of u + v + w,
where each of the quantities u, v, and w is a function of z.

Let dx be any increment given to z, and Ju, dv, and Jw the
corresponding increments of u, v, and w. Then, obviously, the

increment of thie sum u+v+w
is equal to du 4+ Jv 4 Jw, and we have
du+dv 4w 1imit Au dv | dw
D, pulidit ik ik
wtotw) = oe 0[ i ] to=0| 22T 2t I

_ limit [ 4%}  limit limit
T de=0 [:Aa:]+ dx=0 [ ]+Ax—0 [Aw]

but, since du and Jx are corresponding increments of the func-
tion u and the independent variable z,

limit | 4u] .
dx=0 [Aw_j =D.u;
' P v
in like manner ‘}:r;to l::k% =D,v,
’ limit [Aw’
and . — |=D,w;
dx=0| dz |
hence D, (v+v+w)=D,u+ D,v+ D,w. [1]

"It is easily seen that the same proof in effect may be given,
whatever the number of terms in the sum, and whether the
connecting signs are plus or minus. So, using sum in the sense
of algebraic sum, we can say. the derivative with respect to x
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of the sump of a set of functions of x i3 equal to the sum of the
derivatives of the separate functions.

23. Required, the derivative of the product uv, where « and v
are functions of x.

Let 2y, u,, and 2, be correspondmg values of , u, and v; let
4z be an increment given to «, and 4u and 4v the corresponding
increments of » and v. Then,

[D. (w) ], = it I:(uo + du) (vﬂ: 4v) — u v,,] _

(up+ du) (Vo dv) — ugvy = Uy dv + vy du + du Jv
limit [:uo 4v + vy du + du A'v]

and [D, (wv) ]z=x0= dx=0 dx

limit Av + limit Au v+ limit [ dudv
= dz=0 42=0 da=0| dz
u, does not change as dx changes, and

limit | 4v D. .
420 [Aa: = [Py’

limit dvl_
so that Az =l 0 [uo Z:_J = U [D] sz,

and in like manner
limit [,,0 ]

dz=0| " 2z |~ W[ D)oz
dudv may be written du dv or dv A_u Let us consider
dx dx dz
limit dv
dz=0 [Au Ic:] :
As 4z approaches 0, du, being the corresponding increment of

the function %, will also approach 0; and the product du jv
£

will approach 0 as its limit, if A—:): approaches any definite value ;
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that is, if D,v has a definite value. It is, however, perfectly

conceivable that j—: may increase indefinitely as 4« approaches
zero, instead of having a definite limit ; and, in that case, if%;
should increase rapidly enough to make up for the simultaneous
decrease in du, the product du % would not approach zero.

‘We shall see, however, as we investigate all ordinary functions,
that their derivatives have in general fixed definite values for
any given value of the independent variable ; but, until this is
established, we can only say, that

limit | 4 v _
AxﬁO[ "Az]“o

%g has a definite limit, as do=0; that is, when

[D.0]z=z, oF [D:u]s=s,
has a definite value. With this proviso, we can say,

[Dz (uv) ]z=zo= v [D. u]x=z°+u0 [Dz'v]z=:co H

v
when — or
¢ dx

or, dropping subscripts,
D, (wv) =uD,v + vD,u. [1]

Divide through by v, and we have the equivalent form,

D, (w) D,u D,v .
e =t (2]

If we have a product of three factors, as uvw, we can repre-
sent the product of two of them, say vw, by z, and we have

D, (wvw)_D, (w2) D,u D,z
wo - w - w Tt

But Diz_D.(ww)_Duwv, Dow,
2z 2w v w
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D, (ww) D,u D,v Dw
+—+

wow - u - w

(3]

This process may be extended to any number of factors, and we
shall have the derivative of a product of functions divided by the
product equal to the sum of the terms obtained by dividing the
derivative of each function by the function itself.

24. Required the derivative of the quotient Y. where u and v
v

are functions of z. Employing our usual notation, we have

Uy + du _ U
D.(* _ limit | %+ 4v %,
v/ Jz=a, dx=0 dz ’

but Y+ du Uy _ 'voJu—quv
v v v v+ vedv

and dividing by Jz, we have

[t
D,(2)],_ = mit | e
v) Je=z, d2=0| vf+vdv

_’vo [Dzu]x=zo" U [Dz’v]x=:co
= )

Vg
and dropping subscripts,
D, (‘%) _ vD,u ;’ uD,'v' [1]
ExAMPLES.
Find

W) D.[#+2—v(@]; @) DFV@]; @) YD,

Ans.

(1) 822 1— 25 (2) 2 +20y(2); (3) —

7
2«/( ) w( ) 24/ (%)
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(4) Find, by Art. 24, [1], D(i)
(5) Deduce D,z" from last part of Art. 23.

25. If the quantity to be differentiated is a function of a ‘
function of z, it is always theoretically possible, by performing
the indicated operations, to express it directly as a function of
z, and then to find its derivative by the ordinary rules; but it
can usually be more easily treated by the aid of a formula which
we shall proceed to establish.

Regquired, D, fy, y being itself a function of x. Let x, and y,
be corresponding values of « and y; let Jz be any increment
given to x, and Jy the corresponding increment of y ; then

limit I:f (% + 4y) —f.'lo.ﬂ_/:l.

dz=0 dy dz

As Jx and 4y are corresponding increments, they approach zero
together ; hence

limit [S(%+ 4y) —S%

dz=0 dy
. limit [/ @t 4y) — oo
is the same as dy=0 [—Ay— ’
which is equal to (D, fy)y= ¥

e Defy)emn =Dy f9)y =y [De¥)o =z,
~ or, dropping subscripts,
D.fy=D,Jy.-D.y. (1]
This gives immediately, as extensions of Art. 21, [1] and [8],
D, (ay)=uaD.,y, D,y*=ny""'D,y.
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26. Art. 21, [3] can now be readily extended to the case
where n is any number positive or negative, whole or fractional.

Let n be a negative whole number — m, m of course being a
positive whole number. Let

y=w=a""

| then we want D,y. Multiplying both members of
Y=z

by «*, we have’ y=1.

Since #™y is a constant, its derivative with respect to # must be
zero; but by Art. 23, [1] and Art. 21, 8],

D, [e"y] =+"D,y+ yD,a™ =2 D,y + ma™"y
m being a positive integer ;
oDy + 'n;,x"'“y =0,
and Dy=—mz ly= —me " '=na""L Q.E.D.

Let » be any fraction g where p and ¢ are integers either posi-

tive or negative. As before, let
y=ar= v, required D, y.
Clearing Y= ¥ of radicals,
we have yI=x"; ;

and since the two members are equal functions of z, their deriva-
tives must be equal ;
Dzy' = Dzmp ’

or . qu—lpzy.:pwp—l,



20 DIFFERENTIAL CALCULUS. [ART. 26.
The formula, D,z = nz*—,

Art. 21, [3], holds, then, whatever the value of n.

ExaMPLE.

Prove Art. 24, [1] by the aid of Art. 21, [3] and Art. 23,
{1], regarding % as a product, namely uv—1,

By the aid of these formulas,

D,a=0; (1]
D,ax=a; [2]
D,z=1; (31
D,z"=naz*"1; . [4]
D,(u4+v+w)=D,u+D,v+D,w; [5]
D, (uwv) =uD, v+ vD,u; (6]
n,(t) =tz wbe, 7]
D, (fy)=D,(fy).D.y; (8]

any algebraic function, no matter how complicated, may be dif-
ferentiated.

ExAMPLES.
Find D,u in each of the following cases : —
(1) u=m+nz. Ans. Du=mn.

(2 u= (a+bx)ad Ans. D,u= (4bz+ 3a)a?
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(8) u=~/(+a?).

Solution : w=+/(2 + a?) = (@ + a®)L.
Let y=at+a?,
then u=yk

D.u=D,y*=D,yt. D,y by Art. 26, [8],

D,yt=4y-} by Art. 26, [4],
D,y=2x; '
. Du= wg)-& =z (2* 4 a?)~} =:/(xfTa’) .
4) u= (1—-::-:—0)” Ans. D,u= o 1_':;_):“
(5) u =(‘1T%2' Ans. D,u —_-__hzga_'__j)f).
6) u=QA+2)/(1—2). - Ans. D'1t=;\/1(:——%.
O] u=m- Ans. D,?c:—j(gill) — 22,

= —I—V(x) . . = — 1 .
® =TTV A D 2(1+ V&) v (o)

)] u=\/c—f:) Ans. D,u= (l—w)\l/(l—z*).

_ 4 +y(1=ah)
{0 = 2 = (1=

Ans. D,»u= —33[:14- Wl'-_x'ﬁ]
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CHAPTER III
APPLICATIONS.
Tangent.; and Normals.

27. We have shown, in Art. 15, that the angle r, made with
the axis of x by the tangent at any given point of a plane curve,

when the equation y=rr

of the curve, referred to rectangular axes, is known, may be found

by the relation
) A
tanr = limit | 4Y
TS w0 [Aw]’

where 4y and Jz are corresponding increments of y and z, the
coordinates of a point of the curve. If the point be (@,y), we
have, then, o

tant, = [Dzy]a,':xo‘

At any point (2,y) tant = D,y. [1]

A line perpendicular to any tangent, and passing through the
point of contact of the tangent with the curve, is called the nor-
mal to the curve at that point. If #, be the angle which the
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normal at the point (#,%,) makes with the axis of X, then it is
evident from the figure, that
"

o= 90° + 7,
and from trigonometry,
1
tanyy= — cot 7y = — ——.
S V7R

Of course, for any i)oint (x.y)

. .
Dy (2]

tany = —

28. Since the tangent at (%,y,) passes through (%), and
makes an angle r, with the axis of =, its equation will be, by
analytic geometry,

y—Yp=tanz (x —x) ;

or, since tanz,= [Dzy]z=xo’
Y= Y%= [D.y)o=z,(* — ). (1]

In like manner, the equation of the normal at (%,3,) is found to

1

- [Dzy]z,':xo (= ). [2]

be Y—%=

The distance from the point of intersection of the tangent
with the axis of X to the foot of the ordinate of the point of
contact, is called the subtangent, and is denoted by ¢..

The distance from the foot of the ordinate of the point ¢o the
intersection of the normal with the axis of X, is called the sub-
normal, and is denoted by n,.

In the figure, 7’4 and AN are respectively the subtangent and
subnormal, corresponding to the point («y,%,) of the curve.

Obviously %= tanto=[D.y],=zp .
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and P a0 (180° —s)= —tanp=— T ;

n_" - [Dl y]z=x° ’

hence for the point (%,%),

t.= ——[Dz‘.'il:‘])m:zo y MN=1%Y% [Dzy]x=1'o'

The distance from the intersection of the tangent with the
axis of X to the point of contact is sometimes called the length
of the tangent, and may be denoted by ¢.

The distance from the point at which the normal is drawn to
the point where the normal crosses the axis of X is sometimes
called the length of the normal, and may be denoted by =.

It is easily seen from the figure, that

t= /(%' +1.), s
and n=~/(%"+ ;lf) ;
hence t=y[D.y]lz2: V(1 + [D.y)i=z)>
and n=1y V(1 +[D.y]z=z,)-

For any point (2,y), our formulas become

t,= D-'i o (3] .

n,= ?/Dz.?l 3 [4]

t=y[D,y]"'v(1 +[D.y1") ; (5]

n=y~/(1+[Dy]). . , (€]
ExAMPLES.

(1) Show that the inclination of a straight line to the axis of
X is the same at every point of the line ; i.e., prove tan r constant.
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(2) Show that the subnormal in a parabola
y¥r=2mzx

is constant, and that the subtangent is always twice the abscissa
of the point of contact of the tangent.

(3) Find what point of the parabola must be taken in order
that the inclination of the tangent to the axis of X may be 45°.

29. If the equation of the curve cannot be readily thrown into
the form . y=re,

D,y may be found by differentiating both members with respect to
x and solving the resulting equation algebraically, regarding D,y
a8 the unknown quantity.

For example ; required the equation of the tangent to a circle
at the point (a,y,) of the curve. The equation of a circle is

2P =1

r being constant. Differentiating with respect to z, we have,
by Art. 26, [8],

2¢+42yD,y=0.
Solving, Dy=— :_‘; = — 5 )

o
[Dzy]::::xo = —%‘ ’
and by Art. 28, [1], the required equation is
Y—Yo=—2 () ;
Yo
or, clearing of fractions,
Yoy — Yo' = — 2z + a7,

BT+ Yoy =% + Yo' 5
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but (2y,%,) is on the curve, hence
x' +yo' =14
and we have X + Yoy =1,
the familiar form of the equation.

ExaAMpLES.

(1) Find the equation of the normal at («y,%,) in the circle ;
of the tangent and the normal at (z,y,) in the ellipse and the
hyperbola referred to their axes and centre.

(2) Find at what angle the curve y*=2ax .

cuts the curve ©—3axy 4+ =0.
Ans. Cot—' 4.

(3) Show that in the curve «t 4+ yt = at

the length of that part of the tangent intercepted between the
axes is constant and equal to a.

\/ Indeterminate Forms.

30. When, under the conditions of the problem, the value of
a variable quantity is supposed to increase indefinitely, that is,
to increase without limit, so that the variable can be made greater
than any assigned value, the variable is called an infinitely great
quantity or simply an infinite quantity, and is usually represented
by the symbol . Since infinite quantities are variables, they
will usually present themselves to us either as values of the
independent variable or as values of a function.

31. By a value of a function corresponding to an infinite value
of the variable, we shall mean the limit approached by the value
of the function as the value of the variable increases indefinitely.

Thus, if y=fr,
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and y approaches the value a as its limit as « increases indefi-
nitely, the value of y corresponding to the value o« of % is a, or
as we shall say, for the sake of brevity,

y=a when 2 = .

Since % approaches 0 as its limit as « increases indeflnitely,

1
we say 5=0when z= Go,
. 1
or, more briefly, - =0.

If,‘ as the variable increases indefinitely the function instead of
approaching a limit, itself increases indefinitely, we shall say

y= o when z= oo,

meaning, of course, ¥ increases indefinitely when # increases
indefinitely.

32. If, as the variable approaches indefinitely a particular
value, the function increases without limit, we say that the
JSunction i3 infinite for that particular value of the variable. For
example ; as the angle ¢ approaches the value 90°, its tangent
increases indefinitely, and by taking ¢ sufficiently near 90°,
tan¢ can be made greater than any assigned value. So we

say tan ¢ = o when ¢ = 90°,
or, more briefly still, tan 90° = oo.

Again, % increases indefinitely as @ approaches zero; so we
1
say 7= o when 2= 0,

or simply = co.

O

The student can easily convince himself, by a little consideration,
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that our definition of infinite is entirely consistent with the ordi-
nary use of the term in algebra, trigonometry, and analytic
geometry.

33. The expressions, g, %, and 0 X oo, are called indeter-

minate forms ; and as they stand, each of them may have any
value whatever; for consider them in turn: — By the ordinary
definition of a quotient as ‘‘ a quantity that, multiplied by the

divisor, will produce the dividend,” g may be anything, as any

quantity multiplied by 0 will produce 0.

So, t00, -2 may have any value, as obviously any given quan-
tity multiplied by a quantity that increases without limit will
give a quantity increasing without limit.

That 0 X % is indeterminate is not quite so obvious ; for, since
zero multiplied by any quantity gives 0, it would seem that zero
multiplied by a quantity which increases indefinitely must still
give zero, as is indeed the case ; and it is only when 0 X o pre-
sents itself as the limiting value of a product of two variable
factors, one of which decreases as the other increases, that we
can regard it as indeterminate. In this case the value of the
product will depend upon the relative decrease and increase of
the two factors, and not merely upon the fact that one ap-
proaches zero as the other increases indefinitely.

It is only when g,
as limiting forms, that we are able to attach definite values to
them.

=, and 0 X o occur in particular problems

34. Each of the forms_gg and 0 X o, as we shall soon see,
can be easily reduced to the form g, and this form we shall now
proceed to study.

If fr=0and Fr=0 when z = a,

. I P .
the fraction fﬁ, which is, of course, a new function of x, assumes




CHAP. IIL] APPLICATIONS. 29

the indeterminate form g when = a, and the limit approached

by the fraction as « approaches a is called the true value of the
fraction when # = a, and can generally be readily determined.

By hypothesis Ja=0and Fa =0,

hence we can throw i’x into the form ;: jF"a’ for in so doing we

are subtracting 0 from the numerator and 0 from the denomina-
tor of the fraction. Again, we can divide numerator and de-
nominator by  — a without changing the value of the fraction ;

Jr—fa’
therefore ’ﬁ =rI-®
Fx Fx—Fa
T—a
and the true value of
Jr—fa
[ﬁ __limit [ﬁ:] _limit | @—a
Fr|... e=a|Fz| z=a|Fr— Fa |

rT—a

But z— a, being the difference between two values of the
variable, is an increment of x; fr— fa, being the difference
between the values of fr which correspond to z and a, is the
corresponding increment of the function, hence

fmit [ =) (D, o

and in the same way it can be shown that

limit [ Fx— Fa
,}2’2[ — a] [D.Frlema

wherefore the true value of ;x when z=a is _—Eg ﬁ]]:: . We

have then only to differentiate numerator and denominator, and
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substitute in the new fraction a for x, in order to get the true
value required. It may happen that the new fraction is also -
indeterminate when # = a ; if 8o, we must apply to it the same
process that we applied to the original fraction.

The student will observe that this method is based upon the

supposition that fa=0and Fa=0,

80 that it is only in this case that we have established the relation -

EXAMPLES.

Find the true values of the following expressions : —

1)

(2

3

4

®)

(6)

(7

[:':111=,' ~ dns. 11,
[::tgf;: ;::4_- Z’;I iglﬂ- Ans. 10
el na. 2
:ﬁ —\;(; a o le- Ans. 0.
:\/ @a :—_;)\/—(1\7(2- @) |oeo Ans. 1.
:\/ (® — ://(5;)_4; ;)/(x— a)],=,' e, ;/(127) .
[x‘ —xs s_zfsf : x2— 3],=; Ans. .

85. If fx and Fx both increase indefinitely as x approaches
the value a, or, as we say for the sake of brevity, if
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Jfa= o and Fa = o,

we can determine the true value of l—i_;] by first throwing the
s=
1

frwctlon Iz mto the equivalent form FT’ which assumes the form

z
?—) when z = a, and may be treated b).'f the method just described.
Ir . Je=0 and Fz = » when 2=a,
the true value of [ fr.Fr],_. ‘can be determined by throwing
fx.Fz into the equivalent form -f—, which assumes the form g

1

Fz
when z=a.

L’

J' Mazxima and Minima of a Continuous Function.

86. A variable is said to change continuously from one value
to another when it changes gradually from the first value to the
second, passing through all the intermediate values.

A function is said to be continuous between two given values
of the variable, when it has a single finite value for every value
of the variable between the given values, and ckanges gradually
as the variable passes from the first value to the second.

87. If the function is increasing as the variable increases, the
increment 4y, produced by adding to # a positive increment 4z,

will be positive ; :”_Z will therefore be positive, and limit ["y]

dz=0
will also be positive ; that is, D,y will be positive.
If a function decreases as the variable increases, the increment
4y, produced by giving  a positive increment 4z, will be nega-

tive ; _y will therefore be negative, and hm1t0 [ :] will also be

negatwe that is, D,y will be negative.
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Since D, y, being, as we have seen, itself a function of x, may
happen to be positive for some values of  and negative for
others, it would seem that the same function may be sometimes
increasing and sometimes decreasing as the variable increases,
and this is often obviously the case. For example; sing in-
creases as ¢ increases, while ¢ is passing through the values
between 0° and 90°; but it decreases as ¢ increases, while ¢ is
passing through the values between 90° and 180°.

~ 88. Not only does any particular value of the derivative of a
function show by its sign whether the function is increasing or
decreasing with the increase of the variable, but it shows by its
numerical magnitude the rate at which the function is changing
in comparison with the change in the variable as the latter is
passing through the corresponding value.

For example ; when r=2,

D,a2? or 2z equals 4, and this shows that when z increasing is
passing through the value 2, its square is increasing four times
as fast.

For if 4z and dy are corresponding increments of the variable

and the function, starting from a particular value 2, of , ::—Z may

be regarded as the mean rate of change in y compared with the

change in z, and limit 49| will then show the actual rate of
dz=0| 4z

change at the instant x passes through the value x,.

39, If, as the variable increases, the function increases up to
a certain value and then decreases, that value is called a maxi-
mum value of the function.

If, as the variable increases, the function decreases to a cer-
tain value and then increases, that value is called a minimum
value of the function.

In these definitions of maximum and minimum values, the
variable is supposed to increase continuously.

As a maximum value is merely a value greater than the values
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immediately before and immediately after it, a function may
have several different maximum values; and, for a like reason,
it may have several different minimum values. If

y=ro

be the equation of the curve in the figure, the ordinates y, and
Y, are maximum values of y, y; and y, are minimum values of y.

40. In the following discussion we shall suppose throughout
that the variable continually increases. Then, as at a maximum
value, the function by definition changes from increasing to
decreasing, its derivative must, by Art. 37, be changing from a
positive to a negative value; and if the derivative is a continu-
ous function of the variable in the neighborhood of the value in
question, it can change from a positive to a negative value only
by passing through the value zero.

Since, at a minimum value, the function by definition changes
from decreasing to increasing, its derivative must be chang-
ing from a negative to a positive value, and must therefore be
passing through the value zero, provided that it is a continuous
function of the variable in the neighborhood of the value in
question.

41. Confining ourselves for the present to the case where the
derivative is a continuous function, we can say then, that if y is
a function of z, any value x, of X corresponding to a marimum
or a minimum value of y must make D,y zero. This can also
be seen from the figure of Art. 39. For, at the points 4, B, C,
and D, the tangent to the curve is parallel to the axis of X, and
therefore at each of these points D,y, which is, by Art. 27, the
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tangent of the inclination of the curve to the axis, must equal -
zero.

Of course it does not follow from the argument just presented,
that every value of & that makes D,y = 0 must correspond either
to a maximum or a minimum value of y; and it is evident, from
the figure just referred to, that, at the point E, the tangent is
parallel to the axis of X, and D,y is zero, although y; is neither
a maximum nor a minimum.

42. In order to ascertain the precise nature of the value of y
corresponding to a given value of  which makes D,y zero, we
need to know the sign of D,y for values of x just before and just
after the value in question, and this can generally be determined
by noting the value of the derivative of D, y, which we can always
find, as D,y itself is a function of «, and can be differentiated.

43. D, (D,y) is called the second derivative of y with respect
to x, and is denoted by D,’y. D, (D.py) is called the third de-
rivative of y with respect to «, and is denoted by D,%y; and in
general, if n is any positive whole number, D, (D,*~'y) is called
the nth derivative of y with respect to «, and is denoted by D,*y.

44. Ezample. Required the nature of the value of z*— a*
corresponding to the value 0 of z.

Leu y=o—2a’:
D,y =82 — 2uz,
Diy=6x—2;
[D.y]):=0=0,
[D.'y)eco= —2.

Since Dy is negative when =0, D,y must have been de-
creasing as « passed through the value zero, and as

[D.y]e=0=0



CHAP. III.] APPLICATIONS. 35

D,y must have been positive before =0, and negative after
=0 therefore, y must have been increasing before =0, and
decreasing after = 0, and must consequently have a maximum
value when £=0. To confirm our conclusion, let us find the
values of #®*— 2 when 2= —.1, when 2=0, and when z=.1:

[#*—2").cy= —.011,
(@ —2].c0=0,
[#*—2]sua= —.009;
and the value corresponding to = 0 is the greatest of the three.

45. If [D.y)emz, =0
and [D.'y)z=z,>0,

D,y must have been increasing as « passed through the value
x,; and, therefore, since D,y = 0 when x = ,, it must have been
negative before ¢ =, and positive after z=a,: y then must
have been decreasing before = %, and increasing after x = #,
and so must be a minimum when z = ,.

46. If [D.y])z=z,=0
and © [DPY)e=z=0s
we must find the value of D,y before we can decide on the nature
of . Suppose [D.9)e=z,=0,
[D.’y]z=z.,=§,
and (D y)z=z,<O-

As [D.y].—,, is negative, D,*y must have been decreasing as
« passed through the value a, and being 0 when == x,, must
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have been positive before and negative after. D,y therefore
must have been increasing before z =z, and decreasing after ;

and as [D,y]:,:% =0,

it must have been negative both before and after x =a,. The
function y, then, must have been decreasing both before and
after = 2, and y, is neither 4 maximum nor a minimum.

e

i ExampLES.

(1) Show thatif  [D.y],—,, =0
[Dz’y]z=zo=€)’

a

and [Dy)z=z, >0,
¥, is neither a maximum nor a minimum.
@ If [D.y),—s, =0,
[D9)2=z,=0
[D. ylz—x,,—é
and [D:'y]e=2,<0, Y is a maximum.
@) If [Deylemzy =0
[D. y]z_a:o':Q
[D:2Y)rmz, =0
and [D.'y])e=z,>0s Y% is a minimum.

\ 47. The preceding investigation suggests the following method
of finding the values of the variable corresponding to maximum
or minimum values of the function. Differentiate the function
and find what values of x will make the first derivative zero.
This may, of course, be done by writing the derivative equal to
zero, and solving the equation thus formed. Substitute for x,
in turn, in the second derivative, the values of x thus obtained,
and note the signs of the results. Those values of « which make
the second derivative positive correspond to minimum values of

K
-
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the function, and those that make the second derivative nega-
tive, to maximum values of the function. If any make the
second derivative zero, they must be substituted for  in the
third derivative, and the result interpreted by the method of
Art. 46. '

ExAMPLES.

Find what values of # give maximum and minimum values of
the following functions : —

(1) u=22"—212*4 86z — 20.
. Ans. =1, max.; =6, min.

@) u=2"—92*4 15z —3. ,
Ans. =1, max.; ¢= 5, min.

(8) u=82%— 12543 + 2160z.
Ans. Max. whenz= —4 or 3;
min. when = — 3 or 4.

(4) Showthat u=a*—82%+62+7
has neither a maximum or a minimum value ; and that

is neither a maximum nor a minimum when z = 0.

(5) A person in a boat, three miles from the nearest point of
the beach, wishes to reach, in the shortest possible time, a place

five miles from that point, along the shore. Supposing he can
walk five miles an hour, but can row only four miles an hour,
required the point of the beach he must pull for.

>
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_ With the notation in the figure, the distance rowed is /(" + 9)
miles, the distance walked is 5 — x miles, and u, the whole time
taken, is evidently

_J@E+9) 5—z
u= 1 +—5

hours,

and 2 must have a value that will make » a minimum.

z 1
D= @E¥9) 5
9
2 —_— —
Div= o
. z 1
Solvmg m—g—o’
we get r=14;

but, on substituting these values of « in turn in the expression
for D, u, we see that =4 is the only value which will make
D,u=0, since we must take the positive value of /(¢*+9),
from the nature of the case, as it represents a distance traversed.
Remembering this fact, we find
9
ng 24 = T
(D u)eme= 505

and u then is & minimum when =4, and the landing-place
must be one mile above the point of destination.

48. In problems concerning maxima and ininima, the func-
tion u can often be most conveniently expressed in terms of two
variables, # and y, which are themselves connected by some
equation, so that either may be regarded as g function of
the other. In this case, of course, » can, by elimination, be
expressed in terms of either variable, and treated by the usual
process. It is generally simpler, however, to differentiate u,
regarding one of the variables, =, as the independent variable,
and the other as a function of it, and then to substitute for D,y
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its value obtained from the given equation between z and y by
the process suggested in Art. 29. )

VR
ExAMPLES.

(1) Required the maximum rectangle of given perimeter.
If a be the given perimeter, we have

v 22+ 2y=a; (1)
z and the area u=xy. (2)

Differentiate (1) with respect to «, and we have

24+2D.y=0,
whence Dy=-—1; 3)
Dou=aDy+y=—2z+y, by (3),
. Dfu=—14+Dy=—-1-1=-2, by (8).
Du=0ife=y,

and D,*u is negative ; therefore the required maximum rectangle
is a square.

(2) Prove that of all circular sectors of given perimeter the -
greatest is that in which the are is double the radius.

(8) A Norman window consists of a rectangle surmounted
by a semicircle. Given the perimeter, required the height and
breadth of the window when the quantity of light admitted is a
maximum. Ans. Height and breadth must be equal.

49. After finding the values of # which make
D,u=0,

it is often possible to discriminate between those corresponding
to maximum values of » and those corresponding to minimum
values of u by outside considerations depending upon the nature
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of the problem, and so to avoid the labor of investigating the
second derivative.

ExAMPLES.

(1) Prove that when the portion of a tangent to a circle in-
tercepted between a pair of rectangular axes is a minimum it is
equal to a diameter.

(2) Determine the greatest cylinder of revolution that can be
inscribed in a given cone of revolution.

Ans. If b be the altitude of the cone and a the radius of its
base, the volume of the required cylinder = .% =atb.

(8) Determine the cylinder of greatest convex surface that

can be inscribed in the same cone. Ans. Surface __:%a

(4) Determine the cylinder of greatest convex surface that
can be inscribed in a given sphere.  Ans. Altitude = 7+/(2).

(5) Determine the greatest cone of revolution that can be
inscribed in a given sphere. Ans. Altitude =§ .

(6) Determine the cone of revolution of greatest convex sur-
face that can be inscribed in a given sphere.

Ans. Altitude = %
J Integration.

50. We have seen (Art. 12) that when a body moves accord-
ing to any law, if v, £, and s are the velocity, time, and distance
of the motion respectively, v = D,s.

Suppose we have an expression for the velocity of a body in
terms of the time during which it has been moving, and want
to find the distance it has traversed. For example; the velo-
city of a falling body that has been falling ¢ seconds is always
gt, where g is constant at any given point of the earth’s surface :
required the distance fallen in ¢ seconds.
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This distance is evidently a function of ¢, for a change in the
number of seconds a body falls changes the distance fallen.
Represent this function by s; then, as

v=D,s,
we have D,z=gt;

that is, the distance i3 that function of t which has gt for its
derivative; and to solve the problem we have to find the func-
tion when its derivative is given.

51. Having given the equation y = fz of a curve (rectangular
coordinates), required the area bounded by the curve, the axis
of X, a fiwed ordinate yo, and any second ordinate y.

e b

o A A4

¢ AT d

This area, 4, is obviously a fanction of @, the abscissa corre-

sponding to the second bounding ordinate y, for a change in z

changes A. Let us see if we cannot find the value of D, 4.

Increase by 4z, and represent the corresponding increments
of 4 and y by 44 and dy. From the figure, the area

acdf < acdb < ecdb ;
but the area of the rectangle

acdf = y4z,
the area of the rectangle

ecdb = (y + dy) 4=,
and acdb=44;
hence yle< A< (y + dy) 4z
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and we want AI:I_:% [%] Divide by 4z,

44
== dy.
and y< Aa:<y+ Y

That is, ‘—L% always lies between y and y + 4y ; and as they ap-
proach the same limit, y, as dz=0, ‘}:!:._to [%] must be y, and
we have ) D, A=y=fx;

and to solve the problem completely, we have to find & function
from its derivative.

Y 52. Having given the equation y = fx of a curve (rectangular
codrdinates), required the length of the arc between a fized
point (X,Yo) of the curve and any second point (X,y).

This length is obviously a function of the position, and therefore

of the codrdinates of the second point; and as the equation of
the curve enables us o express y in terms of x, we can consider
the length s a function of . Let us see if we can find its deriva-
tive. Increase # by 4« and represent the corresponding incre-
ments of 8 and y by 4s and dy respectively. We see from the

figure that PQ< 48 PN + NQ,
PN being the tangent at P.
PQ = (4z)*+ (dy)*,
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PN = 4z .secr.
NQ= 4y — MN.
MN =4z .tanr.

hence NQ = 4y— 4z tanr,
and we have

V(4z)* + (dy)'< 48< 4z sect +dy — 4z tan .
Divide by 4z, —

,, (—ﬂ)< <secr+_¥ tan .

1 [ - v

[

I

But we know, Art. 27, [1], that

A tant=D,y;
and by trigonometry,

sec*r =14 tan’r =14 (D,y)?,

sect =1 + (D.y)?;

hence
oy [‘“’“ +3- ta'"] Vi+(D.y)'+ D.y— D.y,
or =1+ (D,y)*

As %’ lies always between two quantities which have the same

2
limit, V1 4 (D,y)? its limit must be V1 +(D,y)? and we have
D,s= V14 (D.y)

D,y can be found from the given equation, and therefore
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V14 (D.y)* can be determined. We can then regard D,s
as given, and again we are required to obtain a function from
fts derivative.

53. To find a function from its derivative is to integrate, and
the function is called the integral of the given derivative.
Thus the integral of 2z is #*+4C, where C is any constant, for
D, (2*+4 C) is 2z. In other words, if y is a function of z, that
function of x which has y for its derivative is called the integral
of y with respect to x, and is indicated by /[.y, the symbol /,
standing for the words integral with respect to x. '

54. Since the derivative of a constant is zero, we may add
any constant to a function without affecting the derivative of the
function ; so that if we know merely the value of the derivative, the
function is not wholly determined, but may contain any arbitrary,
i.e., undetermined, constant term. In special problems, there
are usually sufficient additional data to enable us to determine
this constant after effecting the integration.

55. Since integration is defined as the inverse of differentia-
tion, we ought to be able to obtain a partial set of formulas for
integrating by reversing the formulas we have already obtained
for differentiating. Take the formulas —

Dx=1;
D.,ax=a;
D.ay=aD,y;
D,z =na—1;

D(u+v+w+ &c.)=D,u+D,v+ D.w+ &c.;

and we get immediately —
S l=x2+ C; (l)
Sua=ax+ C; @
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SiaD.y=ay+C; ®
Sinarl=a"+ C; 4)

JS:(D,u+D,v+Dw+ & )=u+v+w+&c.+C; 5)

where C in each case is an arbitrary constant.
The forms of the last three can be modified with advantage

In (3), call Dy=u;
then y=/u,
and (3) becomes Sau=af,u4+C. (6)

By the aid of (6), (4) can be written,
nf,ar'=a"+C.
Change n into n 41, and we get
(n+1)fLer=2*14C,

or j;a:“—x‘—+l+0' )

where C is any arbitrary constant, although, strictly speaking,
different from the C' just above.

In (5), let D,u=y, D,v =2z, &c.,
then u=/[y, v=/,.2, &c.
and Sy +2+ &)=Ly +/i2+ &e.+ C;

or, the integral of a sum of terms is the sum of the integrals of
the terms. . :

56. We can now solve the problem stated in Art. 50. The
~ velocity of a falling body at the end of ¢ seconds is gt feet, g
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being a constant number ; required the distance fallen in ¢ sec-
onds. We have seen that, if v, ¢, and s are the velocity, time,
and distance respectively, v=D,s;

hence s=/fv.

Here s=/fgt+C;
but by Art. 55, (6) and (7),

f.yt=yﬁt=9§+0=&gt’+0;

and in this case we can readily determine C, for when the body
has been falling no time, it has fallen no distance, -0 s must
equal zero when ¢ = 0, and we have

0=39(0)*+C=0+0C, and C=0;
and our required result is 3= 4gt’.

57. Required the area intercepted by the curve y*= 4, the
axis of X, and the ordinate through the focus.

From the form of the equation we know that the curve is a
parabola with its vertex at the origin and its focus at the point
(1,0). The initial ordinate in this case is evidently the tangent
at the vertex.

If A is the required area, D. A=y, (Art. 51),
then A=/y.
Yy =2z =2u};

hence A=/f2x= 2Lwl_2;i+0=—wi+0

A stands for the area terminated by the ordinate correspond-
ing to any abscissa z.

It is obvious from the figure that if we make =0, the ter-
minating ordinate y will coincide with the initial ordinate through
the origin, and 4 will equal zero. So we can readily determine C,
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¥]
N
for we have A=0ifx=0;
8o that 0=§ox+0=0,
and A=§zl.

If z=1, as it must in order that y may pass through the focus,

. A= g, the required area.

ExXAMPLES.

(1) Find the area bounded by the curve 22 =4y, the axis of -

X, and the ordinates corresponding to the abscissas 2 and 8.
Ans. 42.

(2) Prove that the area cut off from & parabola by a double
ordinate is two-thirds of the circumscribing rectangle.

(83) Required the area intercepted between the curves y*=4ax
and 2= 4ay. . Ans 16a?

(4) Find a formula for the area bounded by a curve z=fy,

the axis of Y, and two lines parallel to the axis of abscissas.
Ans. A=f,z+C.

(5) Find a formula for the area intercepted by a curve y =/,
the axis of X, and two ordinates (oblique codrdinates).
Ans. A=sinwf,y+C, » being the inclination of the axes.

14
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(6) Prove that the segment of a parabola cut off by any chord
is two-thirds of the circumscribing parallelogram.

58. Required the length of the portion of the line

4r—3y+2=0 1)
between the points having the abscissas 1 and 4.

We have seen that D,s= V1 + (D,y)* Art. 52,
where s is the length of an arc;
hence 8=/, \/1+—(_D,y)’
From (1) we get 4—-3D,y=0,
' D.y=4#,
Vi+(D.y)*=4;
and therefore s=/fA4=482+0C, where s stands for

the length of the arc from the first point to any second point whose
abscissa is . If we make z =1, the two points will coincide and
8 must equal 0; then 0=%+0,

and s=4g(xz—1).

To get the required distance, # must equal 4 and we get s= 5.

ExamPLE. ‘
(7). Find the length of the portion of the line Ax+ By +C=0'
between the points whose abscissas are «, and z,.
2
Ans. ﬂﬁi_Bifl (21— o).
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CHAPTER 1IV.
TRANSCENDENTAL FUNCTIONS.

59. In order to complete our list of formulas for differentiat-
ing, we must consider the transcendental forms, logz, a*, sinz, &c.

Let us differentiate log .

By our fundamental method, we have

hmlt log (% + 4x) — logx
D, IOgac_ =0 [ o )

log(z+ dx) —logz _ 1 r4dw] 1 4z
4z _A:vlog paall b el

limit [ 1
and Dlog:c—A:cmlo[ log(l+ )]

But as dx approaches zero, log(l + A_:) approaches log 1, i.e.,
zero, and Ala: increases indefinitely ; so that it is by no means easy
to discover the limit of the product ‘—}:—c log (1 + iﬁ) .

This product can be thrown into a simpler form by introduc-

ing : = Zma_; in place of Jz.

1 4 ‘ 1 1 1\
Iz log(l +;w) then becomes -;ﬁ log (l +7n_>’ or log(l +_7h—) .

As 4z approaches zero, 'Aﬁz or m increases indefinitely, and

D, logz = h’““[ log<l+ )”]
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and the value we have to investigate is the value approached by

(1 + 1\ 45 its limit as m increases indefinitely, which we in-
dicate by Lmit [1+ ]'

60. Let us first suppose that m in its increase continues always
a positive integer. Then we can expand (1+%)- by the Bi-

nomial Theorem.

R G Ol O

+ &c. to m 41 terms .

=14=
+1+ 1. 2 1 2.3
(1—‘—)(1—%)(1- D,
.
15354 + to m +1 terms

Now, as m increases indefinitely, each of the first n terms of
the series, » being any fixed number, approaches as its limit the
corresponding term of the series

1 1 1 1

SRS TRETT RS WY I

so that we have reason to suppose that there is some simple rela-
tion between this latter series and our required limit.

61. To investigate this question we shall divide the first series
into two parts. The first part, consisting of the first n 41 terms,
where n is any fixed whole number less than m, we shall repre-
sent by §; the second part, consisting of the remaining m —=n
terms, we shall call R.
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1\» -
The )= :
en (l+m) S+R
ok, (22
14~
o +1+ 1.2 + 1.2.8 +
( _1)(1_3)....(1_";1)
m m m
+ 1.28...n
As n i8 a fixed number, we have
hm1t 1 1
o [S1= 1"' *tiz +1 23t Tz

R=<“*—><‘-%>----<l-m;‘>[l-%+<l—%xl—nmi)

1.23....n at+l ' (n+l)(n+2)

(-2)0- )0 I)J,

(m+1)(n +2):(n+3) ..... m

+.oeet

Since n is less than m, each numerator in the value of R is posi-
tive and less than 1, and

1 1, 1 1 1
R<l.2.3.....n[n +1" (n +1)=+ (n41)® tet (n +1)-—~]‘

The sum of the decreasing geometrical series,

1 1 1
il T ey P e T

is by algebra less than 71‘;

therefore B< n(1.2.3...m)’
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limit 1

and m=oo (R]I< n(1.2.8.....n) ;

and we have at last,

limit limit llmlt
it (1) = mms 51+ iy [B]
1 1 1 1
= 1+I+ﬁ+1 2312847 T1z3...m
+ something less than 1

n(1.2.3......n)°
n being any positive whole number.

Thus we obtain the relation that the difference between our
required value and the sum of the first n 41 terms of the series

1 1 ‘1
I+i+istigst
. 1
I8 less than g )’
1 .
The greater the value of n the less the value of I

and by taking a value of n sufficiently great, we may make this
difference as small as we please.

Consequently, by Art. 7, our required value is the limit ap-
proached by the sum of the first n terms of the series

147 + 5+ iag

as n i3 indefinitely increased, or what is ordinarily called the sum
of this series.

62. The series 1+ +—+l 3 3+.... plays a very impor-

tant part in the theory of logarithms. It is generally represented
by the letter e, and is taken as the base of the natural system
of logarithms. Its numerical value can be readily computed to
any required number of decimal places, since each term of the
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series may be obtained by dividing the preceding one by the
number of the term minus one. Carrying the approximation
to six decimal places, we have

1.

1.
0.5

0.1666666

0.0416666 The error in the approximation is
0.0083333  less than one-eleventh of the last
0.0013888 term we have used, and therefore
0.0001984  cannot affect our sixth decimal place.
0.0000248

0.0000027

0.0000002

0.0000000

e=2.718281+, correct to six decimal places.

vV 68. Let us now remove from m the restriction we placed upon
it when we supposed it to have none but positive integral values,
and _Buppose it to increase passing through all positive values.
Let 1 represent at any instant the integer next below m, then
# 41 will be the integer next above m, and as m increases it will
always be between 2 and « + 1, unless it happens to coincide with
#+1, as it sometimes will. 'We have, then, in general,

pe<m<p+1l.

Th +—Y<(1+1)< 1+l)"“-
()< ()< (g

limit I\ . limit ( _)“
S — (l+m) must lie between =0 l-‘l-,‘_*.l and

limit (, | \*+?
i (1+#) ,

) ] 1 )u+| (l+ 1 >p+1
1L )"=( S g limit /t+1
r+1 1+ 17 p=o L
e+1 ﬂ+1

e
2=e.
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(42 "= () (142

limit 1)"( 1)_e le—e:
and #=w(1+# 1+2)=ex1l=e;
hence limit 1+L)-=e-i
= m

Again: let m be negative, and represent it by — r,
1\~ N\~ (r—1\"" r Y 1Y
th —_— = o =| — = —— = —
= () =0 = () =) -(+)
1 \—! 1
_(l+~r_—l) (l+r_—l)'

limit 1\
and m=w (1+—-m)
Tlimit AN Yoex1=
=(r.—l)=w (l+r—1) (l+r._l)_ex l=e.

‘We see, then, that always

limit

l "
M=oo (I+Z) =e¢=2.718281+-

64. In Art. 59 we found that
_ limit (1 1\
D;logz _m=w[w log(l-l- m) ]
We have, then, D, logz = %loge.

If by logz we mean, as we shall always mean hereafter, natural
logarithm of z, loge will equal 1, and
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1
D,logm:i.

If y = fz, D,logy = D;y

Exponential Functions.
65. Required D, a*, a being any constant.
Let u=a*
and take the log of each member,
logu = zloga.
Take D, of both members,

D,u
u

=loga;

D,u=uloga,

D,a* = a*loga.

If a=e; since loge=1,

we have D, =e.

Of course, D,o* = a*logaD,y,

and D,e?=e¢"D,y.
ExAMPLES.

Find D,u in each of the following cases : —
1) u=e(1—2°).

e —e "
e

(2) U=

Ans. Du=

(1]

(1]

(2]

_4 g
(e +e%)?

56

Ans. Du=e(1—82°—2).
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(8) w=log(er+e ). Ans. D,u= :_::
@ u=22. " Ans. D,u=e%'%:—!.
(5) u=logjﬁi:;+:;8::; Ans. D, u__a}T/"(l_l-_-?S'
(6) u=log(logz). Ans. D,u =z1:gx'
(7 u=logmflTw’). Ans. I),u=%_m.
(8) u=2. Ans. D,u=a*(logz +1).

Suggestion. Take the log of each member before differen-
tiating.

(9) u=2ad Ans. D,u:”._l_(l_.?k’_g.w_).
(10) u=e*. ’ Ans. >D,u=e¢'e”.
(11) u=e*. L,“ Ans. D,u=er"2%(1+ logz).
(12) u=2*. ‘-\:'“ Ans. D,u=a:"e’-'w-

Trigono'r;cetric Functions. v

66. In higher mathematics an angle is represented numerically,
not by the number of degrees it contains but by the ratio of the
length of its arc to the length of the radius with which the arc is
described.

arc 6

Thus the angle ¢ is said to be equal to =———. If the arcis
% described with a radius equal to the linear unit,

& this ratio reduces to the length of the arc. This

method of measuring an angle is called the cir-

cular or analytic system, as distinguished from
the ordinary degree or gradual system.
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The value of 860° in circular measure is obviously 2_:1' or 2,

and of 1°is 57;6 or 1_80. "Hence, to reduce from gradual to cir-

cular measure, it is only necessary to multiply the given number
de, b
of degrees by —— 180
The circular unit is evidently the angle which has its arc equal
to the radius, and its value in degrees is easily found. Let x
represent the required value in degrees ; then

z° r _180°
360° 207 4=

Hence, to reduce from circular to gradual measure, we have only

to multiply the circular value by @

67. Required D, sinx.
By our usual method, we have

D,sine = llmxt sin(z + dz) — sinx
dx=0 Az 9

sin(x 4 4x) —sinz _ sinz cos 4z + cosz sin Jz — sinz

dx dz
__cosz sin 4z — sinz(1 — cos 4x)
= r .
D, sinz = limit | ooq,500 42 _ gingl—cosdz
dx=0 dx Jx

= cogg limit [8indz] . limjt [ 1—cosdz]
dz=0| Jdx dr= dx
But as dz = 0, sin Jz = 0 and cos 4 =1, 8o both of our limits,
in their present form, are indeterminate, and require special
investigation.
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68. Suppose an arc described from the vertex of the angle 4z,
D B with a radius equal to unity, then this arc
measures the angle, and is equal to 4z, and
the lengths of the lines, marked s and ¢ in
the figure, are the sin 4= and cos 4z, respec-
— tively.

. limit
Wemshtoﬁnddz O[Az] dA:c— [Aa:]

arc dx << AB+BD

by geometry (vide ¢ Chauvenet’s Geometry,” Book V. Prop. xii.).
We have then AD< d2< AB+BD;
or, since 8s<AD, and AB4+BD=s+1—c,
8l dxe<s+1—c.
But g4c=1,
1—-c=4,

£
1+c’
and 841— ‘il_"ﬁi'.f
14¢

s(14c¢)+ s’
14¢

s(1+c¢)
s(l+c)+s”

l—c=

hence s< A
.88
"'._s>A_a:>

or > > 14¢

1+c+s

d limit must be between 1 and l"mt Ate ; but
Az- 0 Az 1+c+ s +c+s

since, as Jz =0, 8==0, and ¢c=1,
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hmlt{ 1+c ]_2 1
. & _ 2 I

4z=0114c+s —§=
limit [ sin 4z =1.
therefore AwéO[ 2z ]

. l—¢c _1—c_(1—c)(14¢)
In like manner, 5 >Az >s(1+c)+s’

¢ 1—c¢ &
s(l+c)> 4z >s(1+c)+s”

or

E] >l—c 8
14+¢~ dz “ 1+4c+s’

Limit [1=¢] . limit [_3
d20 I:Az] es between 1220 [1+0]’ or 0, and

limit 8 .
dz2=0 [14— c+s]’ or 0;

limit [1—cosdz]_,
therefore de=0|" dz ] .

69. Substituting these values in Art. 67, we have

D, sinz = cosz.

ExaMPLES.
(1) Prove D,cosxz= — sinz.
(2) Prove D, tanz = sec*z,

D,ctnz = — cscizx,
D, secx = tanzsecz,

D,cscx = — ctnzcscz,

sinz
COSZ

from the relations tanz —

]



60 DIFFERENTIAL CALCULUS. [ART. 70.

cthz= L,
tanx
1
secr=_—_,
cosx
cscr = L
sinz
(3) Given versz=1— cosz,
prove D, versx = sinz.
4) Prove D, logsinz = ctnx;

D,logcosz=— tanz;

D, logtanz = secxcscx;

D, logetnz = — secxcsex;
D, logsecx = tanz; )
D,logesce = — ctnz.

/

Anti-Trigonometric Functions.

70. In trigonometry, the angle which has a sine equal to x is
called the inverse sine or the anti-sine of x, and is denoted by the
symbol sin~!. Hence sin—!z means the angle which has « for
its sine, and is to be read anti-sine of x.

In the same way we speak of anti-cosine, anti-tangent, &c.

71. To differentiate sin—'z.
Let y=sin"'z; then x=siny.
Differentiate both members with respect to «.

1= cosyD,y;
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It remains to express cosy in terms of z.

siny =z,
cos’y=1—27,
cosy =+/(1—2") ;
. 1
hence Dsin"'g= ——.
J(a==)
ExAMPLES.
1
1) Prove D.cos o= — ————..
@ N
a1
(2) D,tan :c_1+z’
g 1
(3) D,ctn~'z= T3
4) D.seclo=—1 .
g zy@—1)
gL
(5) D,csclx = 2 d@=T)
1
(6) D_vers x_—_\/(2x—z’)

72. The anti-, or inverse, notation is not confined to trigono-
metric fanctions. The number which has z for its logarithm is
called the anti-logarithm of z, and is denoted by log—'z; and,
in general, if x i3 any function of y, y may be called the corre-
sponding anti-function of x, and the relation of y to z will be
indicated by the same functional symbol as that which expresses
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the dependence of = upon y, except that it will be affected with
8 negative exponent, which, however, must not be confounded
with a negative exponent in the algebraic sense. Thus, if z=fy,
we may write y =f"2.

Any anti-function can be readily differentiated, if the direct
fanction can be differentiated, and by the method we have em-
ployed in the case of the anti-trigonometric functions above.

- Let y=f_lw)
then z=fy;
differentiate, and 1=D,fy.D,y.
_ 1
D, =D
1
D.fle=—,
or Sz DA

and it is only necessary to replace y in this result by its value
in terms of z.

78. Since, in the formula above,

Sy==z,

1

we have =_—>/;
* D’

a result so important that it is worth while to establish it by
more elementary considerations.

Suppose z and y connected by any relation, so that either may
be regarded as a function of the other. Let 4z and 4y be cor-
responding increments of z and y. Then 4z may be regarded
as having produced 4y, or as having been produced by 4y, ac-
cording as we regard  or y as the independent variable; and
on either hypothesis they will approach zero together.

By definition, D,y= Al.}cm:i) j—:],
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— limit
and D,z= 4m=0 [Ay]

4y

dz Az’

dy_ 1 _ 1
4z limit [ 42|  Limit [ 4%]
dz=0|4dy| dy=0|4dy

since 4z and 4y approach 0 together.

.

limit
and 4z=0

Therefore D,y = I%v .
¥

ExAMPLES.

Find D, u in the following cases : —

(1) u=sinz. Ans. D,u=2sinzcosz.
(2) w= cosmz. Ans. D,u= — msinma.
(8) u=umeo=, Ans. D,u=e*(1—2sinx).
(4) u=cos(sinz). Ans. D,u= — coszsin(sinz).
(5) u=sin(logz). Ans. Dyu= % cos(logx).
(6) u=t%x—tanw+w. Ans. D,u = tan‘z.
() u=(a®+2*)tan! z. Ans. D,u= 2xtan“§+a.
8) u=zsin"'z. Ans. D,u= gin-lz 4+ —2%
® =2

(9) w=sin~ -12+1 Ans. Du= 1

7@ T V(A-22—a)
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—=tan'— % .. =1

(10) u=tan 7= Ans. D,u \/(l—a:’)

(11) u=sec™ \/(“’ T@—ay Ans. D,u_d( , )-

(12) w=sin"'+/(sinz). Ans. D,u=}+/(1+ cscz).
1 2z __2

(13) u = tan i—_x'. AM. D.u—l+z2-

(14) u= tan“J(i : z::). Ans. D,u=

L
.
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CHAPTER V.
INTEGRATION.

74. We are now able to extend materially our list of formulas
Jor direct integration (Art. 55), one of which may be obtained
from each of the derivative formulas in our last chapter. The
following set contains the most important of these : —

1 . 1
_ —=l .
D.,logx = gives f'x ogz
— D, =a%loga ¢ f.a*loga=a*.
D,ee=¢e ¢ fef=e.
D, sinx = cosz ¢ f,co8x=sinz.
D, cosz = — sinz ¢ f.(—sinz)=cosz. -
D,logsinz = ctnz ¢ f.ctnz =logsinz.
D,logcosx = — tanx “  fi(—tanw) =logcosx. -
D, sin"'z = 1 “ L -l ina
v(1—2%) v(1—2a?)
D, tan 'z = 1 L _/;;=tan“:c.
* 14 a? 144*
D,vers~'a = 1 o 1 = vers~z.

JGz—a  Fyee—o

The second, fifth, and seventh in the second group can be
written in the more convenient forms,
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a‘
a*=——y3

2z loga

J[.8inz = — cosz;

J.tanz = — log cos=.

75. When the expression to be integrated does not come under

any of the forms in the preceding list, it can often be prepared
Jor integration by a suitable change of variable, the new variable,

of course, being a function of the old. This method is called
integration by substitution, and is based upon a formula easily

deduced from D, (Fy)=D,Fy.D,y;
which gives immediately
Fy=/.D,Fy.D ).

Let u =D1Fy$
' then Fy=/u,
and we have Syu=/,(uD,y) ;

or, interchanging x and y,

Jeu=/,(uD,z). (1]
For example, required /. (a + bz)".

Let z=a+ b,
and then So(a+b2)"=f.2"=[f,(*. D,x), by [1]:
but = %—g,
D,z=%,
hence Je(a+ bz "=%f,z“=%::ll.
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Substituting for z its value, we have

S+ b= G

() EXAMPLE.
. 1 1
F —_ . . = .
ind j;a g Ans blog(a + bx)

76. If fx represents a function that can be integrated, f(a+ bx)
can always be integrated ; for, if

z=a+4 bx,
then D= lb
and Lof(a+b2)=f.fo=/[.feD, 5= 117 Lo
EXAMPLES.
Find
(1) fisinax. Ans. — %eosaa:.
(2) Sfcosax. Ans. .tlisinax.
(3) [ftanax.
(4) Jf.ctnax.
1. RequiredJ,— @ i 5
y; S —
Y (a’ o) a : 1—(*
-G
Let 2= :f,
then T =0z,
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%'f\l[l—l(f)’] i as mdga =
a
f'\-/(l;—z’j =sin~'z=sin"1%
' ExamMPLES.
Find
M S5 2+x, ) Ans. }ltan“z-
@) f,m- Ans. vers™1Z-
78. Required ﬁ‘ﬁfa’)'
Let 2=z 4/(F+a);
then z—x=./(+a),

2—2zz 422 =22+da?,
2zx =2 —a,

=£—ﬁ
2z

£2—a_2Z+a
i N = =2 — ———— =
VE@E+a)=z—x=2 T 7
_Z+a
D,x= 57

S D,z .

=/

\/(1;’+ @) +a2—'/;z’+ ?

. 2z Z24d_ .1
_f,m 57 —f.;=logz=log(x+\/x’+a’)-

n EXAMPLE.

Find./;\/(xg ol Ans. log(z+Va* — a?).
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79. When the expression to be integrated can be factored, the
required integral can often be obtained by the use of a formula

deduced from D, (w)=uD,v+vD,u,
which gives w = f,uD v+ f,vD,u
or JouDv=wv — f,uD,u. [1]

This method is called integrating by parts.
,  (a) For example, required [ log.
"logz can be regarded as the Jproduct of logz by 1.

Call logz=wu and 1= D,v,
1
then D=u= iy
z
v=2;

and we have

Sloge=/f.1logz=f,uD.v=uv— f,vD,u

=zlogx —-_/;; =xlogz — x.

ExamPLE..
(’) Find f,zlogz.
Suggestion : Let logz=u and = D,v.
g Ans. %w’(logx—%).

80. Required [ sin®z.

Let u=sinz and D,v = sinz,
then D,u= cosz,
V= — COS%,

Jf.sin’z = — sinzcosz + /. cos’z ;
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but cos’z = 1 — ginz,
80 Juco8’z = [, 1 — [,sin*z = z — [, sin’z

and Ju8in*z = 2 — sinz cosz — /; sin*z.
2/.8in*x = x — sinz cosz.

J.sin*z = } (z — sinz cosz).

ExAMPLES.
(1) Find f;cos'z. Ans, %(z+sinxoosm).
(2) /f.sinzcosz. Ans. si;’w.

81. Very often both methods described above are required in
the same integration.
(¢) Required f.sin'x.

Let sin~'z =y,
then r=siny;
D, 2= cosy,

Jusin~'z =Ly = f,ycosy.

Let u=y and D,v=cosy;
then D,u=1,
v=siny,
and

JSyycosy=ysiny—/, siny=ysiny+cosy=xsin"'z+ /(1 —2%).

Any inverse or anti-function can be integrated by this method
if the direct function is integrable.

(0) Thus, SS 2= Ly=LyDSy=uy— Sy

where y=r"'z.
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. ExawmpLEs.
" (1) Find f,cos~z. Ans. zeos—'z —/(1 — ).
(2) /f.tan—'z. Ans. xtan“x—%log(l+w’).
(3) Lvex:s“a:. Ans. (a:—l)vers“x+\/(2x-:t’).‘/ Colce- o

82. Sometimes an algebraic transformation, either alone or in
combination with the preceding methods, is useful.

, 1
(a) Required [, b

1 _1/1 1)
P—a® 2a\z—a z+a)

and, by Art. 75 (Ex.),

1
f.w,_ = o [log(s —a) — log (v +a)]= - logm-
(%) Required . \/Gi‘_:)
\l(l+a:)= 142 — 1 + @
i—2)= J(—a) JO—-2)  ya—-2)’
1 - '
/;m= sin~ 'z
So—— VT l—- p can be readily obtained by substituting y = (1—2*), ¥ {: V7=~
and is —+/(1—2%) ; ;_:::‘Y
hence /;\/Gt——:) =sin~'a —+/(1—2%). /
(¢) Required f.Af(a®— o). v
‘ . ‘(i%
V(@ —ah)= —C —2r a _ o 7 V-' ( 7~y

V@=2) " Y@ —2), J@—a)’
X - -
= < th

’ f7:~y‘~

”®
B o~ V) vt
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2 2 . ?
wi @) =atfio g
whence LJ(a’—z’):a’sin"g_/,v(af 50 by AR T3
but Su (@ — ) = z/(a® — :t’)+/'\/( f’ =’

by integration by parts, if we let
u=+/(*—2*) and D,v=1.
Adding our two equations, we have

2/ (@ — ) = 2(@— &) + teinZ;

snd .. fiy/(ai— x’)_—(m\/at__'_aasm—l)

ExXAMPLES.
Find

1) LV (2 +aY).

Ans. % [z+/ (2 + a?) + atlog (e + V2 + a?) ].
(2) S/ (@ —dd).

Ans. % [z+/ (2 — a?) — atlog(z + Vai— a) |.

Applications.

88. To find the area of a segment of a circle.
Let the equation of the circle be

2’ +y* =a’,

and let the required segment be cut off by the double ordinates
through (%g,%,) and (x,y). Then the required area

A=2/y+C.
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Y A

2 N\
/L\‘\‘@\s
X

From the equation of the circle,
y=+/(c®—2%),

hence . A=2/ /(P —2)+C;

and therefore, by Art. 82 (¢),
A=a+/(a®—2?) +a’sin“§ +C.
As the area is measured from the ordinate y, to the ordinate y,
A=0 when 2 = 2,;

therefore 0=/ (a’—2) + a? Si“—l% +0,

x,
2 2 2ain—1

= — 2 a* — —a‘sin~ ' —
C= —ayy/(d — ) - >,
and we have

A=2x+/(a®—2")+ a’sin—lg — Xy /(P —ay®) — a’sin“%
If 2= 0, and the segment begins with the axisof Y,
' z
o —_ in—1—.
.4_ z+/(a* —o*) + a’sin~'
If, at the same time, x = a, the segment becomes a semicircle, and

2
A=a~/(a*—a*)+ a’sin“g=”—;--

The area of the whole circle is =a?®.
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ExamrLEs.
(1) Show that, in the case of an ellipse,

2
@ teE=h

the area of a segment beginning with any ordinate y, is
4-2 [a: Y@yt a’sin"g — #g/ (@ — ) — a’sin"‘f_“—l.
a a

That if the segment begins with the minor axis,

b ST

A=— 2 —of 2ein—1Z |.

“[:x\/(a ) + a®sin a]

That the area of the whole ellipse is =ab.

(2) The area of a segment of the hyperbola
@ _ 9

-2 =1

@
is - =g[zv(x*—a2)—aﬁlog(w+m)
— @y (&' — o) + a*log (z+ V' — a?) ].
If x,= a, and the segment begins at the vertex,
A =§[a:\/(a:’ — a?) — a?log(z +Va* — o¥) + atloga].

84. To find the length of any arc of a circle, the coordinates
of its extremities being (%) and (2,y).

By Art. 52, s=/u/[1+(D.9)*].
From the equation of the circle,

w’+y’=a’,
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we have  ~ 2¢+4+2yD,y=0,

Dzy= —29
y

1+(D,y)’=“'—;;l’ - “?

a 1 NRY /
8=A§=af’m=asm 240, (Art. 77.)

‘When 2 =2, 8=0;
hence 0= asin“?-: +C,
()
—_— in—1_2
O = — asin 7

— o[ ain—1% — gin—120),

and s_a(sm g Sim a>

If £y = 0, and the arc i3 measured from the highest point of the
el T
circle, s=asin™'>

If the arc s a quadrant, ==a,

s=asin"'(1) = ”—2‘1,

and the whole circumference = 2ra.

85. To find the length of an arc of the parabola y*= 2mx.
We have 2yD,y=2m;

Dzy=%;

VI1+ (D)7 =\[(’”’ ; 5’2) =1yt ;
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s=f,[§\/(m’+y’)]=f.[§~/(?n’+y’> D-”]‘

l —
D,y

Dyx= s by Art. 73;

S|=

8= & Nt =L [y Vi g+ milog (y + Vi + ) 1+,
by Art. 82, Ex. 1.
If the arc is measured from the vertex,

$=0 wheny=0;

o_—.2Lm(mflogm)+0,
1

and s=%[y*/(mm+yg)+m10g-'i_tl/_(”":_+_ﬁ].

EXAMPLE.

. Find the length of the arc of the curve #® = 273* included be-
tween the origin and the point whose abscissa is 15.
Ans. 19.



CHAP. VL] CURVATURE. 7

CHAPTER VL
CURVATURE.

86. The total curvature of an arc of a continuous curve is its
total change of direction, and is measured by the angle formed
by the tangents at its extremities. The mean curvature of an
arc is its total curvature divided by its length. The actual curv-
ature of a curve at a given point is the limit approached by the
mean curvature of the arc beginning at the point, as the length
of the arc is indefinitely decreased.

Y]

. 3 x

Thus, in the figure, the total curvature of the arc P, P, or 4s, is
the angle ¢, which is equal to 7 — 7o or Jr. The mean curvature

is j—r, and the actual curvature at P, is
8

limit [ 47|_p
45=0 [As .-

87. To find D, in any particular example, we must, in theory,
begin by expressing r in terms of s by the aid of our old relations

tant =Dy,

D,s=+/[1+(D.y)*], -
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together with the equation of the given curve; but, in practice,
this part of the work may be avoided. By the aid of the rela-
tions just referred to, r and s may be expressed in terms of «;
and, consequently, we may regard them as functions of x, and
can obtain their derivatives with respect to #; and then the de-
rivative of either with respect to the other may be found by the
following principle.

88. If y is a function of 2, and z is a function of =,

D,
D,z= D‘;. (1]
limit [4_2] &
For D.z=dwé0 4z — limit o=
Dy limit [4y] 4==0 | 4y
de=0| d= ax

limit | 42 _ limit { 22| p ,.
dr=0|dy| dy=0|dy d
for 4z, dy, and 4z approach zero simultaneously.

89. We have thus, if x represents the curvature at any point

D,r

<8

of the curve, x=D,r=

Since tanzr = Dzy’
sec’rD,r= D}y,

_Dly. -
D,‘!' = P ’
but sec*r =1+ tan’r = 14(D,y)%,
and D: D"y

Eir@a)
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and, as D,s=+/[1+(D.y)*],
_ D}y
T IO+ D)7

Either the positive or the negative value might be chosen as the
normal one. For reasons that will be evident hereafter, it is
customary to use the negative one; and we have
X = - D z’y
[1+(D.y)"]

(a) For example, let it be required to find the curvature of a

we have

straight line Az+By+C=0 at any point.

Differentiating with respect to «, we have

A+BD,y=0;
D:=_%;
Dly=0;
2
1+(Day=241E;
X = —D”y = 0 =0:
O+ D9 a42+8N\
: B

a result which might have been anticipated.
(b) The curvature of a circle,
24y =ad.
22+2yD.y=0;

D,y: —s;
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e
5, _ y—xD,y__y+37_ :c’+y’_ a"
Dly=— v = I =—- v -—'—*"73,
14+ (Do)t = ”’;-"’ %,,
a’ 1
=5 () -55ma

Hence the curvature of a circle is the same at every point, and i3
equal to the reciprocal of the radius.

If a=1,

and the unit of curvature is the curvature of the circle whose radius
is unity.

(¢) The curvature of a parabola,

y’=2mz.
2yD,y=2m;
D== =£;
y Y
Dgy—_‘_ z!/——ﬂ’;
¥ ¥
1 D,y 2='m’+3/2;
+(D.y) 7
N it % L
y" ¥ (mtt

and is a function of y, one of the coordinates of the point con-



CHaP. VL] CURVATURE. 81
sidered. From the form of x, it is obvious that'the curvature
is greatest when y=0;

that is, at the vertex of the curve; that it decreases as y in-

creases or decreases, and that it has equal values for values of
y which are equal with opposite signs.

ExAMPLES.

(1) Required the curvature of the ellipse

g + .g = : at any point.
_ atb!
Ans. l————(b‘w’+a‘y’)0
(2) Of the hyperbola %- §=1.
_ atbt
. ant 2= R A
(3) Of the equilateral hyperbola
2
y="3.
——_a
Ans. x= @+

Osculating Circle.

90. As the curvature of a circle has been found to be the
reciprocal of its radius, a circle may be drawn which shall have
any curvature required. A circle tangent to a curve at any point,
and having the same curvature as the curve at that point, is called
the osculating circle of the curve at the point in question. Its
radius is called the radius of curvature of the curve at the point,
and its centre is called the centre of curvature.

From the definition of the radius of curvature, it is obviously
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normal to the curve, and its length is the reciprocal of the curva-
ture at the point. If p represents the radius of curvature, we

have p= 1
X

Of course, p is generally a function of the coordinates of the point
of the curve, and changes its length as the position of the point
in question is changed.

Evolutes.

91. The locus of the centre of curvature of a given curve is the
evolute of the curve.

PROBLEM.

To find the equation of the evolute of a given curve
y=se.

Let P, codrdinates (z,y), be any point of the curve, and P, (=',y")
the corresponding point of the evolute; v the angle made by
the normal with the axis of x, and p the radius of curvature at
P. p and 7 can be found from the equation of the curve, and

v=1—90°
We see from ihe figure, that
x'=w—-p008v,

y'=y—psinv:
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p and v can be expressed in terms of # and y; and then, with
the given equation, y=fz,

we shall have three equations connecting the four variables, =, y,
«', and y'. We can eliminate « and y, and so obtain a single
equation connecting 2' and y', the variable codrdinates of any
point on the evolute ; and this will be the equation required.

92. For example: Let us find the evolute of the parabola
= 2ma.

tant=D.y= % H

tanv=tan(r—90°)=—oot.-r=—%;

sec’v=l+tan’v=m!+‘y’;

m’
— m 3 -
o= T
iny = _____!/ .
= T )

Since v is given by its tangent, it may always be taken less than
180°; therefore we may take the positive value of sinv, and in
that case, as tanv is negative, we must take cosv with the nega-
tive sign: we have then

iny—=—_ 9 .
SRV RO R

- m

T+
We have seen, Art. 89 (c), that

CO8v =

— m’ .
T
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hence p= (m*+yHt,
m:
m? 4y
0 .
T=x+ m
" m? +
y=y_ ( m’y’) y

and these equations, together with
¥ = 2mz,
are the equations of the evolutg.

Reducing, we have r'=m+8x;

whence z=L M,
3

and ' 1%;

whence y=—(m'y")h

Substituting in the equation of the parabola, we have

(miy)t =22 (@' m).

Reducing, miy't= 2% m?(z'— m)?,
m_ 8 . \s
y'= 27m (@ —m)*;
or, dropping accents,
P=sr(@—m),

the required evolute ; a semi-cubical parabola.

[ART. 92,
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.

93. By expressing p and » in terms of & and y in the general
equations of the evolute of y=fx,

we can throw these equations into a rather more convenient form.

We have the values p= — M‘,
Dly
tant = D,y,
1
tany = D,y’
and coty=— D,y.
siny = —l—— ’
[+ @
D,y

=TI

cmer Ut Dy
Dy  [1+@Dy'P

L DT 1
V=¥t r Oy

1+ (D.y)?
D3y

., 1+(D,y)?
y-—-y+—'—073'/——'

Redmcing g=z— D,y
(1]

o
Required the evolute of a circle. Ans. 2'=0, y'=0.

/

" 94. To find the evolute of an ellipse,

EXAMPLE.

2 ¥
ate=l



r=2x
+ay

Y=y+

and

bz b‘a:’+a‘3f'( a?

DIFFERENTIAL CALCULUS.

[ART. 94.
_—=b=z
D.y———a,y ;

b4
2 e —— ¢
Dly=—Gm
4 4
14 (D)= 22 LY,
a'y’
_z(¥e +aty)

oy \ o) W

b’“”a'j' yg‘y’ ( a’y’)_ g+ aty)

= 7 B
'a
E,+g= 1,

Bt + o'y’ = 't
atyf = (P —27) ;
b‘w’= a’b’(b’ —_ yg).

b + oty = B(a! — o'+ Ve,

or

o=z —

y’=y_

Substituting in

(b — Uy + a'y).
(@t — a2 _ ' b s
at )
YO =B ay) __@=F
b = b ’

2.0 \} -
x=¢%%a;



CHAP. VI.] CURVATURE. 87

!
we have (‘a—,’({x——b’)‘*— (a’i—'b’)’= 1;

or, dropping accents,
(az)t + (by)t = (o — BH)1.

ExXAMPLE.

(v

Find the evolute of the hyperbola :i: - % =1.
Ans. (ax)t— (by)t=(a®+ )1

Properties of the Evolute.

95. We have defined the evolute as the locus of the centre of
curvature of the curve. It is also the envelop of the normals
of the given curve, as may be readily shown; that is, every
normal to the curve is tangent to the evolute. Let v be the in-
clination of the normal at the point (2,y) of the given curve to
the axis of X, and ' the inclination of the tangent at the corre-
sponding point (2',y") of the evolute. We have seen already
that the normal at («,y) passes through («',¥'), so it is only
necessary to prove that =,

But tant'= D_y'
1
and tany = — .
D,y
Hence we must show that D, y'= — 2
D,y
D,y
By Art. 88, Doy'= D‘Z .

since 2’ and y' may both be regarded as functions of .

Dz 14 -Dz .
=1 y[ Dsﬁ(y )M ;
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1+ (D.y)* .
Dry
Dx'=1— (Ds’y), + 3(D=y)’ (‘Dsgy)’ - Dzy [l+ (Dzy)’] D-’!I
T (Dly)*
= — Dzy §3D=!/(D.’3/)' _ [1+ (D:.'/)']D:!If .
(D.ry)? ’

2 Ds.’l(D-’!l)’ - [1 + (D,y)']D,’y
4 D)

= 8D.y(D.y)*— [l + (Dzy)’] D}y ;
(D.y)?

Y=y+

D:y'= Dzy +

'
Doy==20 — — . Q.E.D.

96. A second important property of the evolute is that the
length of any arc of the evolute is the difference between the lengths
of the radii of curvature of the given curve which pass through the
extremities of the arc in question.

Let (z),%') and (2,y5) be the extremities of any arc of the
evolute ; p; and p; the radii of curvature drawn from these -points
to the curve; s the length of the arc of the evolute measured
from some fixed point on the evolute to (z,%'); and s; the
length of an arc measured from the same fixed point to (xg',¥;').
Then we wish to prove that

U !
B —=8=py—prn

or 4s'=Jp,
4
1
or Z=0
limit 4_3' =1
or 4p=0 [: AP] 9
or ’ D,s=1,

where 8’ must be regarded as a function of p.
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) D,s'
But Dp8'= D’;
Doas'
and D,s'= D:"; =D,s.D,z.

D, s'=[14 (D, y")*]},

, by Art. 95;

hence D,s'=, Dt ” [1+ (D.y)" ]t

D.¢— _ [1+(D.y)7]4 §8 D.y(D.ly)’ — [1+(D.y)T] D'y}
X (Dy)?
_ @y,
D2y
D, p= _[l+(D-y)’]‘ §3D=?/(D=2y)’—[1+ (Dsy)g:' Dzsy; ;
- (DFy)*

D.s
=7 =1. .E.D.
D.s N

by Art. 95.

U
Dps =

97. These two properties enable us to regard any curve as
traced by the extremity of a stretched string unwound from the
evolute, the string being always tangent to the evolute, and its
free portion at any instant being the radius of curvature of the
curve at the point traced at that instant. From this point of
view, the curve itself is called the involute.
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CHAPTER VIL
SPECIAL EXAMPLES AND APPLICATIONS.
The Cycloid.

98. The cycloid, a plane curve possessing very remarkable
geometrical and mechanical properties, was first studied just
before the invention of the Calculus, and has always been a
favorite with mathematicians.

It is the curve described in space by a fixed point in the rim
of a wheel as the wheel rolls along in a straight line ; or, more
strictly, it is the curve described by any fixed point in the cir-
cumference of a circle, as the circle, keeping always in the same
plane, rolls without sliding along a fixed straight line. The
roﬂing circle is called the generating circle, and the fixed point
the generating point, of the cycloid.

The curve will evidently consist of an indefinite number of
equal arches, and can be cut by a straight line in an unlimited
number of points. Its equation, then, cannot be of a finite
degree, and so cannot be an algebraic equation. The curve is
a transcendental, as distinguished from an algebraic, curve.

99. As the arches are all alike, it will do to consider a single
one. Its base is obviously equal to the circumference, and its
height to the diameter, of the generating circle, and its right and
left hand halves are symmetrical.

We can get its equation most easily with the aid of an auxil-
iary angle. Take as axes the base of the cycloid, and a per-
pendicular to the base through the lowest position of the generat-
ing point, and represent by ¢ the angle made by the radius
drawn to the generating point at any instant, with the radius
drawn to the lowest point of the generating circle. The arc
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7 X

joining the two points just mentioned is a#, by Art. 66, if a is
the radius of the circle ; and this is therefore the length OT. If
« and y are the codrdinates of P, any point on the cycloid,

xr=af —asinf
. ; (4)
y=a—acosd

and these may be taken as the equations of the cycloid. Of
course, § may be eliminated between these equations, and a
single equation obtained, containing # and y as the only varia-

a—
bles. We get cosl = —a-! s .
1—cosf= %: versd,
hence 0= vers"%;

sin0=\/(l—cos’0)= j:%.\/(2ay_y’)’

and r= avers“% FNQay—-y), (B)

where the upper sign before the radical is to be used for points
corresponding to values of §<, that is, for points on the first
half of the arch, and the lower sign for points on the second
half of the urve.
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ExAMPLES.

(1) Discuss completely the form of the cycloid from equations
(A4), supposing 6 to increase from 0 to 2x.

(2) Discuss the form of the cycloid from equation (B), sup-
posing y to increase from 0 to 2a.

100. If our axes are lines parallel and perpendicular to the
base through the highest point of the curve, the equations have
a slightly different form. Let # be measured from the highest
point of the generating circle.

OT=AB=af
and z=ab 4 asind
©)

y=—a-+acosd

EXAMPLES.

(1) Obtain equations (C) from equations (4) by transform-
ation of codrdinates, noting that the formulas required are

r=ar+2,
y=2a+y,
0=7!'+0'.

(2) Eliminate ¢ and obtain a single equation for the cycloid
referred to its vertex as origin. R
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101. The properties of the curve can be investigated from the
equations involving # or from the single equation. In the text
we shall employ the former. We ought to be able to determine
(1) the direction of the tangent and normal at any point of the
curve; (2) the equations of tangent and normal ; (38) the lengths
of tangent, normal, subtangent, and subnormal ; (4) the curva-
ture of the cycloid at any point; (5) the evolute; (6) the length
of an arc of the curve; (7) the area of a segment of the curve.

(1) 102. x=af —asiné,

y=a—acosd,
[ ]

i i 2sinf cosf
tanr = Dzy=D—9y= asiné £ Siné = g 2=00tg;
Dyx  a—acoss 1— cose 2sin?)
tany = — cotr = — tan§.
Since, as we have seen in Art. 99,
sint = }1 Vv (Q@ay -3
and 1—cost =Y,
a
tanr can be wfitten =\/<2_: - l),
| Yy
and tany= ————~ .
- V(@ay—yY).
Since » tany = — tan§,
y=r—4 by trigonometry.

In the figure (see next page), PTO being formed by a tangent
and a chord, is measured by half the arc P7, and therefore is
equal to§. PTA, then, is equal to v, and the line PT is a normal.
Hence the normal at any point on the cycloid passes through the
lowest point of the generating circle. The tangent must, therefore,
pass through the highest point of the generating circle.
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EXAMPLES. e

(1) At what point of the curve is the tangent parallel to the
base of the &ycloid? Perpendicular to the base? Where does
it make an angle of 45° with the base?

(2) Obtain the values of tanr and tanv from equation (B).

(2) 103. The equation of the tangent at the point (zy,y,) is
by Art. 28, Y—Yo=cot? (z — ),

or y—yo=\,(i—:'—1)(w—zo);

of the normal, is y—y,= —tan%’(w—z.,),

%o (z— ).

o V=== ap—1)

EXAMPLE. &

( ” Show, from the equation of the normal, that it passes through
the point (a6,0), the lowest point of the generating circle.

(8) 104. We have the formulas,

y
Dy

t,=

n,=yD,y,
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t=_1Y_ y[1+(D.y)%,

D,y
n=y/[1+(D.9)"]; (Art. 28) ;
1—cosd) 2asin®d
hence t,= a( » s9) L. 2asin’§tang.
cot$ cotd

n=a(l— cosﬂ):qt" = 2asin’§ cot§ = 2asingcos§ = asind,
t=2asin*$tanfcsch = 2asinftang.
n=2asin*§csc§=2asinf.

Since D.y =\[ (2—; - 1),

the value of » may be expressed,

n=y(2ay).
_D’y
5. = e Y . .
@ 10 = (Art. 89)
Dy(D,y) _ —4ess_ 1
Diy==¢ = = — —csc!
y Dyx 2asin® 4a b
[l+(D,y)’]i=csc"§,
hence l=4l—acscg,
and p=;l‘-=4asin§= 2n=2+/(2ay) ;

and the radius of curvature at any point is equal to twice the
normal drawn at the point.
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EXAMPLES.

(1) Find at what points of the curve the curvature is great-

est; at what least.
(2) Obtain the expression for the curvature from the equa-

tion (B).
(5) 106. The equations of the evolute of a curve are

14 (D,y)*

=z~ D,y Diy

(Art. 98 [1]).

Here
cotesc?
2'=af — asino——g—i= af— asind + 4asin§cos§
~ oot
=af — asinb + 2asind,

=ab 4 asind.

c .
y=a—acosf+ csc't =a—acosd — 4asin’}

—Etcsc‘£
=a(l1—cosf)—2a(l1—cosf)= —a+acosb;
and we have, as the equations of the evolute,
2'=al 4 asinéd }
b

y'= —a+acosd

but these (Art. 100) are the equations of an equal cycloid re-
ferred to the tangent and normal at the vertex as axes. The
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cycloid and its evolute would be situated as indicated by the
figure.

The property of the evolute established in Art. 96 enables us
to obtain easily the length of the arc of an arch of the cycloid

Y|

Evotute.

The length of the half-arch of the evolute is the difference be-
tween the radii of curvature at the highest and the lowest points
of the given curve; that is,

[pJo=2— [PJo=0=4a sin;—" —4asin0=4a,

and S, the whole arc,= 8a.

(6) 107. The length of an arc of the cycloid can be found
from the formula s=/f[1+(D.y)*]}*
without using the evolute.

We have D,y = cotf,

(14 (D.y)"]t = esc;
hence 8=/, cscd=/fycsc§ Dyx:
but Dyz=2asint},

and 8=2q/,sin}.
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Let z=§;
then D,0=2,
s=2a/,8inz=2a/,8inzD,0 = — 4acosz+C,
8= —4acos+0C.

If we measure the arc from the origin, s must equal 0 when

6=0.
0= —4acos0+4C,
OC=4a,
and we have s=4a(1— cosj).

To get the whole arch, let 0= 2=,

s=4a(l— cosr)=38a.

(7) 108. For the area of a segment of the arch, we have the
formula A=/[y+C.
J.y=af,(1— cosd) = afy(1— cosd) D,z = a’f;(1— cosb)?
= a¥y(1—2co80 + cos*0) = a?(fy1—2/ycos0 +:fyc08%6),
fyl=0,
Jpcosd=sind,
Jycos*0 = 3(0+ sin cos 0)
[see Art. 80, Ex. (1)];
hence @ A=da®[0—2sind+ }(0 4 sinfcosd)]+C.
If the segment is measured from the origin,
A=0when 6=0; ’
0=a?[0—0+3(0+0)]+C
and C=0.
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The area of the whole arch is obtained by making

0=2m.
A=a?[27—2sin27 + }(27 + sin2ncos2x) =3 =a?,

so that the area of the arch is three times the area of the gen-
erating circle.

ExXAMPLE.

Find the length of an arc and the area of a segment from the
equation (B).

109. If the generating circle rolls on the circumference of a
Jixed circle, instead of on a fixed line, the curve generated is
called an epicycloid, if the rolling circle and the fixed circle are
tangent externally, a hypocycloid, if they are tangent internally.
The equations of these curves may be readily obtained. Let the

figure represent the generation of an epicycloid, P being the
generating point and E the starting point. Call AOB, 6; and
PCA, ¢; ODisz and DPisy. Let a and b be the radii of
fixed and rolling circles. Then
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2= (a4 b)cosb + bsin[,o'—(’-; - o)]

3/=(c;+b)sin0—bcos[¢_(’_2'_ )]

but the arcs AP and AE are equal, and

AP=be,
AE = aé,
hence 06 =be
N
- a . u
and o= 3 0; .

p+o=2%00;

and the equations become
m=(a+b)coso—bcosa';'b o)
0

>

y=(a+b)sin0—bsinq$;;—

[ART. 109.

(1]

The equations of the hypocycloid are, in like manner, found to

be :z:=(a—b)coso+beosa-%b01

y=(a—b)sind — bsina—;—!’ J

ExAMPLES.

(2]

(1) If b=a in the epicycloid, the curve is called a cardioide.

Show that its polar equation is
’ r=2a(1—cosy)

when the starting point is taken as pole.
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(2) If a=4b in the hypocycloid, obtain the cartesian equa-
tion of the curve by eliminating 4. Ans. at+ yt=at.

(8) If a=2b in the hypocyloid, show that the curve reduces
to a diameter of the fixed circle.

(4) Prove by differentiation that the normal at any point of
either epicycloid or hypocycloid passes through the point of con-
tact of fixed and generating circles.



102 DIFFERENTIAL CALCULUS. [ART. 110.

CHAPTER VIIIL
PROBLEMS IN MECHANICS.

110. We have seen (Art. 12) that, if s represents the dis-
tance traversed by a moving body in ¢ seconds, and can be
expressed as a function of ¢, the velocity of the body at any

instant v=D;s.

111. The acceleration of a moving body at any instant is the
rate at which its velocity is changing at that instant. If the
velocity is increasing, the acceleration is positive ; if diminish-
ing, the acceleration is negative. We shall represent it by a,
and it is evidently a function of ¢. Since the derivative of a
function measures the rate at which its value is changing (Art.

38), we shall have a=D,v=D2s,
since : v=D,s.

For example : in the case of a body falling freely near the sur-
face of the earth, we have approximately the law

s=164.
Here v=D,s=32t,
and a=Dw=D}s=382,

and the acceleration is constant and is equal to 32 feet a second ;
that is, the velocity of the fall at any instant is 32 feet a second
greater than it was a second before. The relations

v=D,s

and a=Dyw=D]}s,
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and the corresponding formulas,
v=/fa+C,
s=/v+0C,

obtained by integrating them, are of great importance in prob-
lems concerning motion.

112, We shall assume the following principles of mechanics :
(1) A force acting on a body in the line of its motion produces
an acceleration proportional to the intensity of the force; and this
acceleration is taken as the measure of the force. We speak of
a force as a force producing an acceleration of so many feet a
second; or, more briefly, as a force of so many feet a second.
(2) The effect of a force in producing acceleration in any direc-
tion not its own, i8 the product of the magnitude of the force by
the cosine of the angle between the two directions; or, in other
words, it is the projection of the line representing the force in
direction and intensity upon the line of the direction in question.

PROBLEM.

118. The force exerted by the earth’s attraction upon any
particle of matter is constant at any given part of the earth’s
surface, and is nearly equal to 32 feet a second. Let g repre-
sent the exact value of this force at any given point of the
earth’s surface, required the velocity of a falling body at the
end of ¢ seconds, and the distance fallen in ¢ seconds. Here a
is constant and equal to g. :

v=Lia=/g=gt+C.
If the body falls from rest, its velocity is.O when tis 0;
0=9gx0+0C,
C=0;

and v=gt.
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s=/fv=/gt=9g/t=139t+C.
‘When ¢ is 0, the distance fallen must be 0;
0=49x0+C,
C=0,

and s=}gtt.

If the body, instead of being dropped, had started with an initial
velocity vy, —for example, if it had been fired from a gun directly
down or directly up,—we should have found a different value
for C in the expression for the velocity,

v=gt+0C;
for now, when t=0,
vV=";
hence 'vo=.gl X 0+40C,
C =,
and v =gt + vo.
s=Lv=/(gt+v0)= 29" + 0t +C;
but as 8=0 whent=0,
C=0,
and 8=3gt* + vt.
114. The equation . ' a=g
or Dis=g

can be integrated by a second method of considerable interest
and generality. Multiply both members by 2 D,s.

2D,sD3s=2gD,s;
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but 2D,3D}s= D,(D,s)?;

hence /:2D,8D}2s=(D,s)?,

and we have (D,s)*=2g/.D,s=2gs+C

or ¥=2¢s+C.

In the case of a falling body, when

t=0,v=0,and s=0;

hence ' Cc=0
and ¥ = 2gs,

v=1/(295), [1]
or D,s=+/(2gs).

We cannot integrate directly here, for the first member is a
function of ¢ and the second member a function of s; but since

Ds= Dl.t, by Art. 78,
1 1
= = sk
V(298)  /(29)

=ty =g =G

Since 8=0 when t=0,

C=0

and t= J(?g—‘") 2]

It is easily seen that these new values for v and ¢ are entirely
consistent with those obtained in the last article.
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115 If the force is any constant force f, instead of g, we
9 have merely to substitute f for g in the preceding
. results. For example, take the case of a body
3 |~ '¥| sliding without friction down an inclined plane.
i Here, by Art. 112, (2), the accelerating force
in the direction of the motion is g cos (90° — ¢), therefore

\,

'5”.

a=gsing, .

v=+/(2gsing.s),

and t= \I )
sing

when there is no initial velocity. In this case, the velocity and
time are easily expressed in terms of the vertical distance
through which the body has descended. Let OP be s, and 0A,
the vertical distance, be y. Then

Yy =ssing,

v=+/(299),

o t=(Grer) =\

Substitute y for s in Art. 114, [1] and [2], and we get, as the
velocity the body would acquire falling freely through the verti-
cal distance y, and the time required for the fall,

v=+/(299),

2y
)
We see the two velocities are identical; that is, the welocity
acquired by a body descending an inclined plane is precisely
what it would have acquired falling through the vertical distance
it has actually descended.
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g is the mean velocity of the body during its descent, and

f =\I (%'-’) for the inclined plane,

v \[ (22-'_/) for the falling body.

Hence the mean wvelocity of a body descending an inclined plane
is equal to the mean velocity of a body which has fallen freely the
same vertical distance.

116. Let the figure represent a vertical circle. The time of
descent of a body sliding down any chord is

t—d 28 \_ |[/2scsce\__ | 2ssec(90°—¢)
“N\gsing/ ™~ 9 / g
by Art. 115. If a 1s the radius,

8.8ec(90°—¢)=2a

and t= 2\I<§>,

which is also the time a body would require to fall vertically the
distance 2a. Therefore, the time of descent down a chord of a
vertical circle from the highest point of the circle to any point
of the circumference is constant, and is equal to the time it would
take the body to fall from the highest to the lowest point of the
same circle.
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ExAMPLE.

Show that the time of descent down a chord from any point
of a vertical circle to the lowest point of the circle is constant.

PROBLEM.

’117 . To find the velocity acquired by a body falling from a

r,

To

r

Then we have

or

distance toward the earth under the influence of
the earth’s attraction.

Here we cannot regard the attracting force as
constant, as we do in dealing with small distances
near the surface of the earth, but must take it as
inversely proportional to the square of the distance
of the body from the centre of the earth. Let B
be the radwus of the earth; 7, the distance from
the centre of the earth to the point at which the
body started; r the distance from the centre to
the position of the falling body when the time ¢
has elapsed. Let g be the force of the attraction
of the earth at the earth’s surface, and f the force
exerted at P.

s, the distance fallen in the time ¢, equals 7, — 7.

hence

Dg=—D,r=w,

Dis=—D}ir=a;

— D,’?’ = g—r’-R’,
D"T = — LR-’o

”
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Multiply by 2D,r; 2D,r Dir = :”’_f’i'l.
Integrate : D -
S 1_29F .
(Dir) 2R 5 = —29F, 5==""—+0C;
and V= @+C.

When the body was on the point of starting, its velocity was

zero ; hence, when r=1ry v=0;
29R?
and =292 +0,
To
2gR?
C=— o
and 'v’=2gR’(l—l).
T,

When the body reaches the surface of the earth,
r=R

1 1
v¥=2¢9R} - —=).
and 9 ( 7, To)
The greater the value of r, in this result — that is, the greater
the distance of the starting point from the centre of the earth —

the nearer % comes to the value 0, and the nearer +* approaches

0
to 2%3-2 or to 2gR. In other words, the limiting value of the

velocity acquired by a body falling from a distance to the surface
of the earth under the influence of the earth’s attraction, as the
distance of the starting point is indefinitely increased, is /(29 R).

Let us compute roughly the numerical value of this expression.
g is about 32 feet per second ; and as we use the foot as a unit
in one of our values, we must in all: therefore B must be ex-
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pressed in feet. R is about 4,000 miles, or 21,120,000 feet.
4/ (R)= 4,600, nearly.
V(29)=+/(64)=8.

/(29 R) = 86,800 feet, or nearly seven miles; and our required
velocity is nearly seven miles a second; and neglecting the re-
sistance of the air, this is the velocity with which a projectile
would have to be thrown from the surface of the earth to prevent
its returning.

We can easily go on and get an expression for the time of the
fall by a second integration.

We have (D,r):= 2gR’(——;) 2gR2 N T,

Tor
ey

NEF):
'—D, t—\/(2gm) \l(ro—r) by Art. 73,
~=\(g) =)
\’ (ror—r) = T =y’

an expression to which we can apply the method of integration

by parts.
Let u=r,
then Du=1;
1
and let Dyv=—ooo
N (ror =77’
then v= vers—‘g; by Art. 77, Ex. (2).
[
__1‘ = _1?_7' - _137:
I =7 TVers "  vers ™
by Art. 79, [1],
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Let Z2= &,
To
then D,r= To,
2
j',vers"ir gj;vers“z= 7;2" [(z—=1)vers'z24++/(22—2)]
[

by Art. 75, [1], and Art. 81, Ex. (3). Replacing z by its

value, /;vers“2r ( —-2-)versr12 +(rr—17%).

7o

) [g’wers“w —f(ror — r’)]+0’

Whence — ¢ = To
enee \l(2yR’

When r=7r,t=0;

hence —\/ (2 P R’) o) 4 Oa
o= (%)
and — t=J(8 R’) [ro(vers—‘%: - 1:) — 2~/ (1o — r’)].

ExaAMPLES.

(1) The mean distance of the moon from the earth being
237,000 miles, find the velocity a body would acquire, and the
time it would occupy, in falling from the moon to the earth’s
surface, neglecting the retarding effect of the moon’s attraction.

(2) The force of the sun’s attraction at its own surface is
905.5 feet; find the velocity a body would acquire, and the
time it would occupy, in falling from the earth to the sun.
Earth’s mean distance = 92,000,000 miles; sun’s diameter =
860,000 miles.
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(3) Find the limit of the velocity a body could acquire fall-
ing from a distance to the sun.

(4) How long would it take Saturn to fall to the sun,
Saturn’s mean distance being about 880,000,000 miles?

PROBLEM.

118. To find the velocity acquired under the influence of
gravity by a body sliding without friction down a given curve,
or in any way constrained to move in a fixed curve.

Here the effective accelerating force is always tangent to the
curve at the point the moving particle has reached. Suppose

<1

.

the origin of codrdinates at the starting point, and let the direc-
tion downward be the positive direction of the ordinates. Of
course, this will amount to changing the sign of D,y ; that is,
will make r the supplement of its usual value. The acceleration

a=gcosg=gcos (90° — r) =gsinr.
D.y=tanr,
14+ (D,y)?= sec’r,

1 2
T+ Dy 7

D,y
[1+(D.y)7 ]t

=sinr,
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9D,y

=D! —_ . J e
hence | a=D/ s 0T DT
but [1+(D.y)t=D,s;

Dis=g 2:3.91 =gD,y.
Multiply by 2D;s: .

2D,sD2s= 2gD,yb,s =2¢D,y.
Integrate with respect to ¢, and
v*=(D,8)? =29y +C.
If the particle started from ‘rest at O,
v=0 when y=0,
and C=0,
v=1/(29%) ;

but this is precisely the velocity it would have acquired in falling
freely through the vertical distance y (Art.114,[1]). So we are
led to the remarkable result, that the velocity of a material par-
ticle, sliding without friction down a curve, under the influence
of gravity, is the same at any instant as if it had fallen freely to
the same vertical distance below the starting point. A special
case of this has already been noticed in Art. 115.

ExXAMPLE.

Prove, from the equation of a circle, and the equation of a
chord through its highest point, that the time of descent is inde-
pendent of the length of the chord.

N/ ) PROBLEM.

) 119. To find the time of descent of a particle from any point
of the arc of an inverted cycloid to the vertex of the curve.
.Taking the origin at the vertex of the curve, its equations are
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4

Y|

0
r=al+ asind

(Art. 100).
Yy=a—acosl

Let y, be the ordinate of the starting point, and y the ordinate
of the point reached after ¢ seconds. Then the vertical distance

fallen is yo—y, and  v=vV2g(»%—y¥), by Art. 118.
Dy(s%—38)=—D3=V29(%—y) ;

1

-Dit=——;
V29 (%—1v)

1

—t=f—L _=f,—L Ds;

V2g(t—1)  V29(%—3)

D,s=VI+ (D)%

D,s 1\
D'S=I),y_ (D_,y> +1=V1+(D,2)*;

Dyx=a+ acosd;
Dyy=asind;

D,x=%=1+c°so'

Doy sin¢

a—y
cosf = a 3
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20—y,
’

14 cosd =

¢ —a'+2ay—y'_ 20y—9,
a? a?

sin?d =1— cos”()-
. 1 2
sind = /(2ay — ¥);

Do= et =\Gemt = Y):

1+(D, w)'_2—“,

o)
_t=f_l/@= Ef_1._= ‘_lvers‘l?ﬂ.g-o
"V2g9(30—9) \Kg) "Ny — ) \Ky) Y%

by Art. 77 (2). When y=y, t=0;
hence 0= (g) vers~!(2) + C.
vers~!(2) is the angle which has the cosine —1, that is, the

angle =. Hence, C=— J(g) ,

w )

When the particle reaches the vertex,
y=0,

verg™! 2—y— =0,

and t=r \[@ L
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As this expression is independent of ¥, the ordinate of the starting
point, the time of descent to the vertex will be the same for all
points of the curve. If a pendulum were made to swing in a

cycloid, this time w\/ G) would be one-half the time of a com-

plete vibration, which would therefore be independent of the
length of the arc. On account of this property, the cycloid is
called the tautochrone curve.

ExXAMPLE.

120. It is shown in mechanics, that, if the earth were a per-
fect and homogeneous sphere, and a cylindrical hole having its
axis coincident with a diameter were bored through it, the at-
traction exerted on any body within this opening would be pro-
portional to its distance from the centre. Find the expression
for the velocity of a body at any instant, supposing it to have
been dropped into this hole, and the time it would take to reach
any given point of its course. Compute (1) its velocity when
half-way to the centre; (2) when at the centre; (8) the time it
would take it to reach the centre, if dropped from the surface;
(4) if dropped from any point below the surface. Given g=382;
R, the radius of the earth, = 4,000 miles.
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CHAPTER IX.
X DEVELOPMENT IN SERIES.

121. A series is a sum composed of an unlimited number of
terms which follow one another according to some law. If the
terms of a series are real and finite, the sum of the first n terms
is a definite value, no matter how great the value of n. If this
sum approaches a definite limit as n is indefinitely increased, the
series is convergent ; if not, it is divergent. The limit approached
by the sum of the first » terms of a convergent series as n in-
creases indefinitely, is called the sum of the series, or simply
the series. Thus, we may express the result arrived at in Art. ¢
by saying the sum of the series 14+ 3+ ¢+ 3+ - is 2; or,
more briefly, the series 1+ 3+ }+ 3+ =2,

ExAMPLE.

122. TFake the series 142 + 22+ 2® + -...., ad infinitum. The
series is a geometrical progression, and the sum of n terms can

ar*t—a

be found by the formula s= —
©r—1 11—z

Here Tl 1-z
limit

Ifz<1, n‘i_“; [z*]=0,

and the sum of the series = 1—1-‘—'; , a definite value, and the series

is, therefore, convergent.
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Ifx>1, 2*=0o whenn=oo,

and the sum increases without limit as the number of terms in-
creases indefinitely, and the series is divergent. The series

1+z24 22425+ oo can be obtained fromﬁby actual divi-
sion, but the fraction and the series are equal only when x<1;
for ll—z has a definite value when 2>1; but, as we have seen,

the series in that case has not a definite sum. It is very unsafe
to make use of divergent series, or to base any reasoning upon
them, for, from their nature, they are wholly indefinite. Con-
vergent series, on the other hand, are perfectly definite values.

It is easily seen that the sum of the first » terms of a series
cannot approach indefinitely a fixred value as n is increased, un-
less, as we advance in the series, the terms eventually decrease;
or, in other words, unless the ratio of the nth term to the one
before it eventually becomes and remains less than unity as n is
increased. This, however, affords only a negative test for the
convergency of series, as a series may not be convergent even
when each term is less than the term before it.

123. The series we have just considered is an example of a
series arranged according to the ascending powers of a variable,
and such series play an important part in the theory of functions.
We are naturally led to the consideration of terms of such a
series whenever we attempt to obtain a function from one of its

derivatives. Suppose D,"f(xy+h)=2

where k is a varigble, «, a given value, and z, of course, a func-
tion of k. Let /? stand for f, &c., so that /™= "',

Then Dy f(%o+ h) = A, + /32,
where A, is a constant ;

Dy~ f (xg +h)=A;+ A b + /322,
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Dy=3f (wo+ b)) = A+ Ash + 3 A 1P+ fifz,

Dyt o+ ) =Au-+ Ash+ 3 a1+ S A+ /17

F@o+h)=dy + Ay sk + 3 A, 1* + %A,_shs -

+ A 4 finz,

1
2.8 (mn—1)

and we have a set of terms arranged according to the ascending
powers of k. Although, by increasing » indefinitely, we can
make the second member above a true series, it does not by
any means follow that every function can be developed into such
a series. In the first place, it may not be possible to increase
n indefinitely in the expression above, as the nth derivative of
the function may become at last infinite or discontinuous, so
that /"2 cannot be dealt with. Next, the series may be a diver-
gent series, and then it could not be equal to the definite value
f(@+ k). But the result is a remarkable one, and suggests
the careful investigation of the development of functions in
series.

\/124. Assuming, for the moment, that f (2, 4+ %) can be devel-
oped into a convergent series arranged according to the ascend-
ing powers of I, let us see what the coefficients of the series
must be. Let

S(@+h)y=Ay+ A h+A 02+ AR + oo + A R A oo

The function and the series are both functions of &, and may be
differentiated relatively to h.

D, f (2 +h)y=A4,+24,0 + 3 A2 +4 A B2+ oo A B e

We shall find it convenient to adopt the following notation :
Let f'x stand for D, fx, f"= for D2fx, f™x for D,"fr. Let



120 DIFFERENTIAL CALCULUS. [ARrT. 124,

S %9, S ™ 2, stand for the results obtained by substituting x, for =
in f'z, f®™x, where 2, may be a single term or any complicated
function. Let n! (which is to be read n admiration) stand for
1X2X83X4X- e X

Call (Zo + h) =2z,

then D, f(xy+ h)=D, fe=D, fxD\x
=J"(@o+ 1) Do+ h)=1"(%0 + b).
In like manner, we could show that
WS (2 + B)=1"(%+ 1),
Dy (o + b)Yy =™ (xy+ 1), &c.

‘ I
by = Aot i Aot A P 1

. / 4
S (2+0)= A, +24h 4 A e 3N 1’,'\‘11\4|f\ ]
it O A
S (@+h)= 24, +-r+n(n—1) A 24115+ )
SO (@ +1) = : ! Ay ()02 Ay bt oo

Let k=0 in these equations, and we have
Jxo=A,, S"x, =814,
S'%= 4, STr=414,
Sty =24,, S¥xp=nl4,

hence Ay = [y, A= Eli Sy,
A,=f"%, 4,= %f" o

1
A=z A= O,
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and f(20+ ) —f%‘l‘hf'xo'f' f" Zot o L o o+ f“xo

.
+ e +mf()xo+ ..... ,

if £ (2o + k) can be developed.

ExXAMPLES.

(1) To develop (a + &)™

Call (a+h)==z,
then Jr=an
Sz =mnz*"1,

S"e=n(n—1)a""2,
SJ"e=n(n—1)(n—2)z"3, &ec.
fa=ar,
fla=na"1,
Sf"a=n(n—1)a"%,
S"a=nn—1)(n—2)a*3, &c.

(a+h)n_an+mn—-lh+n(nz l) an—ﬂh’

+ n(n —‘lg '(n 2) ”_3h3 + ..... ,

if (a + h)® can be developed.
(2) To develop sink.
sink = sin(0 + 7).
Let r=0+4h.

121

1
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Jx=sinz, S0=sin0=0,

S'z = cosz, JS'0=cos0=1,
S"z= —sinz, S"0=—sin0=0,
J"x= — cosz, S"0= —cos0= —1,
STz =sinz, &c. ST0=5sin0=0, &ec.

. n?
sm(0+h)=0+h+0.§—!
By _ K K
315! 7191

sinh=h—

if sinh can be developed.

(3) Assuming that cosh can be developed, determine the
series.

» 125. Let us find what error we are liable to commit if we take
J(xo+ 1) equal to n+1 terms of the series (Art. 124, [1]).
Let R be the difference between f(2,+ %) and the sum of the
first n +1 terms; then

and we want to find the value of R.

LEMMA.

126. If a continuous function becomes equal to zero for two
different values of the variable, there must be some value of the
variable between the two for which the derivative of the function
will equal zero.

For, in passing from the first zero value to the second, the
function must first increase and then decrease as the variable
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increases, or first decrease and then increase. If it does the
first, the derivative must at some point change from a positive

to a negative value; if the second, the derivative must change
" from a negative to a positive value, and in so doing it must, in
either case, pass through the value zero.

.127. To determine R.

T(41)7
ku+l
o @D
and
= ! 2-2- Ty 4 voeee .E_‘ (n) hnt!
f(%+’¢)_f%+kf%+2!f'%+ +n!f x°+(n+l)!
or
— g —hf g — L e ™ g " b
S (@0 +R) — 20 —1f'20— oS0 nlf G )
Call (#+h)=X; .
then h=X—ux, and we have
p—) X -
fX—fxo_.(gl'_“").f’wo_..... ( n""O) f®a,
_ X =z p_y, [1]

m+1)!

Form arbitrarily the same function of a variable z that the first
member of [1] is of 2y, and call it Fz.

Pe=fX—fr— (X z) flz— (X;;z)’fnz_

(X=2)" , (X—2)™
Tal S = (n41)! P
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If 2= «,, Fz becomes identical with the first member of [1], and
therefore = 0.
If 2=X, Fz=0,

since each term disappears from containing a zero factor; and
we have succeeded in forming a function of 2, which becomes
equal to zero for two values, 2, and X of 2. If F% is continuous,
there must be some value of z between z, and X for which F"z = 0.
Differentiating F2, and remembering that P is constant, we have

F'z=0—f'24f'2— —_(}Il_‘ 2) 'z 4 (XIT ) 'z — (X2"' z)’f,,;z

(X—2)* o (X—2)*"!
tegr S Ty T

_(X—z)" wt1) (X_z)”P
n! Jorbet n! )

All the terms but the last two destroy one another, and
Foe - &= purn, (X —2)" p
n! n!

But this must be equal to zero for some value of 2 between x,
and X. Such a value can be represented by x,-+6(X —u)
where 0 is some positive fraction less than 1, i.e., 0<6<1.
Substituting this value, we have

0— _ [X—%%— 0(X-%)]"f(n+n [0 +0(X — )]

n!

+[X—%—0(X—xo)]" P.

n!
‘Whence P=f+D g+ 0(X —1x)].
X—wo=h,

P=7®"+)(z,+ 0h),
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whence  f(%+ R)=rx + f’wo + f"% + e

A"t
G

+ 2 e+ SO (2 + OB),

where all that we know about 6 is that it lies between 0 and 1.

v
128. The expression for the last term may be obtained in a
different form by assuming at the start

R=IP

kn+!

lnstead Of = m

Making this assumption, show that
2
T @ B =ao 4 1o S e

h+(l—-

+§f‘“’wo+ ~ O v (g +- 1.

Since in each of these formulas x, was any given value, we can
represent it in the result just as well by 2, and the formulas may
be written

S@+ ) =fatlf 'zt 24 e

e gy [

f(z+h)=fm+lgf’a:+;"_s!f"x+ .....
+:—:f""w+ hu+l(1:!— 0)"f(.+1)(9,+ 6R). [2]

and these formulas are known as Taylor’s Theorem.
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ExXAMPLE.

129. To develop (2 +1)*%

|
|
Let us see what error we are liable to if we stop at the second |
term. |I
|

|

|

Jr=2o, SM"e=24z,
Sfz=42, STx=24,
f"a:= 122’, f'a:=0.

(241)'=2'+ 1.4.23+;_" 122+ 0)*.

If 6=0, the last term is 24. If 6=1, the last term is 54.
Hence, if we stop at the second term, our error lies between 24
and 54. In point of fact, it is 33. Suppose we stop with the
third term. .

(2+1)*=2'+1.4.23+21_" 12.2*4-;_’, 24(2 +0).
If 6=0, the last term is 8. If 6=1, the last term is 12, and

the error must be between 8 and 12. It is actually 9. Suppose
we stop with the fourth term.

@+1)=241.424+ L1094 Logoy Yoy
21 31 g

4
Here the error is precisely ;—4 24 =1.

ExampLE
To find 8in(0 +1).
Let =17
fr=sinz, [Tz =sinz,
S'z= cosz, STz =cosz, -
S"z=—sinz, f"x—;.- —sinz, &c.

JS"x = — cosz,
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51n(0+1)—1——+-—|———+—sm0
sing __
If6=0, ?!—_0.
sinf __ sinl
Iro=1, 81 40320

4844 is within gg5dx5 of the true value of sinl.

If in any development the general ewpression for the error
decreases indefinitely as we increase n, it follows that, as the
number of terms of the series is indefinitely increased, the sum
will approach as its limit the value of the function, which is
therefore equal to a series of the form obtained, and is said to be
developable.

. 130. Let us consider some examples.
"To develop log(1+ ).

Let z= (14 2).
Sz=loge,
fla=2",
S'z= -2,
SMr=223,
STa= 81274,

fPz=(=1)*"'(n—1)12™"

SOV g= (=1)*nl s,

s1)=0,
Sm=1,
f"(l) =-1,

fm(l) =2,
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ST(1)=—31,
SO =(=)"(n—-1) !,
S (A+0z)=(—1)"n!(1+ 6x)="~"
By Taylor’s Theorem,
log(l+z)=m—%’+%3—%‘+ ..... 4;(_1)»-1%" -

(_l)nxn-}-l —n—-1
+n*+l (14 6x) .

The ratio of the nth term to the term before it is

(—1)(n—1).m

n ’

or —(l —-l-) z. If z is greater than 1 in absolute value, (l —l)a:
n n

will eventually become and remain greater than unity as = in-
creases, and the series ' ‘

22 2
x_§+§_z+ .....

is divergent and cannot be equal to log(1+ ). So we need
only investigate the expression for the error for the values of x
between +1 and —1. Suppose z is positive, and less than 1.
1
Then x'—_:—l (14 6z)—"—! approaches zero as its limit as » in-
n
creases indefinitely, for it may be thrown into the form

1 z \*t! . x x
—_ . Since 2 <1, —/—— s
n+1 (1+0m) ! "1yl (1+(/x) has
zero for its limit as n increases indefinitely ; as has also the

factor L—i—l Hence, for values of = between 0 and 1,log(1+ )
n

is developable, and is equal to the series

This is true even where x =1, for it is easily seen that, in that

1 z \*+!
.. .
case also, o ( 1 0x) approaches the limit zero as = in
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creases. If 2 is between 0 and —1, the second form of the
error, Art. 128, [2], is most convenient for our purpose. Let
z= —«', 80 that &' is positive and less than 1. Then our func-
tion is log(1—=z'), and the series becomes

, 93" zls . w!u xlu+l (l_ 0)u

N R A o

e R

zm+l(1_0)»_- 27' ml_ fx n'
(1—02")*+' ~ 1—6z'\1—02')’

. — ',
where . is less than 1;
— 0z
h lxmlt x' — O
ence =0,
1—6z'
4
and as 1 ?l/:c' is a finite value, the expression for the error de-

creases indefinitely as n increases, and the function is equal to
the series. Our expansion

log(1+a:)=z—£+‘§_?£+ .....

holds, then, for values of 2 between 1 and —1.

The -Binomial Theorem.

31. To develop (1+ z)™.

Let z2=1+42z,
Je=2z2m,
fle=me"!,

fMz=m(m —1)z"2,
f”'g =m(m—1) (m —2)e"3,
f(ﬂ)g:m(m—.l) ..... (m—n+l)8";',

SOV z=m(m —1) (m — n) 2™,
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s=1,
SQ)=m.
S"(1)y=m(m-—1),
f"(1)=m(m—1)(m—2),
™ Q)=m(m—1)-(m—n+1),
SOV (1 4 6x)=m(m —1).cee (m —n) (1 4 )™ ~""1,

By Taylor’s Theorem,
m(m—l)x’ m(m —1) (m — 2)a?

A+z)"=14+mz 4+ 5T 31 e
If m is a positive whole number,
S™z=m],
.f(“+l)z=0’

and all succeeding derivatives are 0, so in that case (14 )™ is
equal to the sum of a finite number of terms, namely (m +41)
terms. If m is negative or fractional, however, this is not the
case. Let us. see whether (1 4 )™ is then developable. The
ratio of the general term of the series to the one before it is

m ": +1,0r (m:—l _1) z. Ifzis numerically greater than 1,

this ratio will eventually become and remain greater than 1 in
absolute value as n increases, and the series is divergent and
cannot be equal to the function. Hence we need examine the
value of the error only for values of z between 1 and — 1. The
cxpression for the remainder after n 41 terms is

m(m —1)-...(m —n)
(n+1)!

which may be thrown into the form

[m(m —1)ee (m —n) :c"“] T 0{:)”1_-.

a:"‘“ (1_'_ 0x)u—n-—l,
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1
(1 + w)u+l—n
greater than 1. Increasing n by unity multiplies the quantity
m—n—1
n+42

(m =1__% \,,

n+2 n4 2) ’

and by taking » sufficiently large, this multiplier may be brought
as near as we please to the value — . If x lies between O and 1,
— 2 is numerically less than 1 ; and as n increases indefinitely, we
multiply our parenthesis by an indefinite number of factors, each
less than 1, and so decrease the product indefinitely. Therefore,
for values of = between 0 and 1, the expression for the error
approaches zero as its limit as n increases indefinitely, and
(14 «)™ is equal to the series

As n increases, the limit approached by is not

in parenthesis by z, which may be written

1+mx+m(1;!_l‘) w2+""'(m"‘13)l(m—2) B4 [1]

ExAMPLE.

Show, by considering the second form for the error, Art. 128,
(2], that for values of « between 0 and —1, (14 x)™ is devel-
opable.

The Binomial Theorem follows easily from the development
of (14 z)™.

(z+r)"= a:"'(l + g)' ;
and if % is less than z in absolute value, we have

(z+h)*=a"+ma™1h 4 %‘ﬂ ) X

+m(m——;)!(m-—2) =3I o e, (2]

no matter what the value of m.
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Of course, if & is greater than z, we can write (¢ + %)™ in the

form ™ (1 + %)', and shall then get as a true development,
(R4 2)"=h"+mh™ 2 4 ...

J Maclaurin’s Theorem.
132. If, in Art. 128, [1] and [2], we let 2= 0, we get

Sh=f(0)+11"(0) + 55 'f"(O) +35 f"'(o) -

+ f(n)( ) + ( +1) 'f(n+l)0h

Sh= f(0)+hf'(0)+ f"(0)+ f"'(0)+ .....
+ 2 7o) LU= O v,

It does not matter what letter we use for the variable in these
formulas. Change k to z, and

Fa=fO)+ a1 (0) + 2 7"(O) + e+ Z 0 (0)

ot

+(n+1)'

f(n+ D oo, [1]

Je=7(0)+zf"(0) .|. fn )+ o 4 7% S™(0)

r+t1(1 — 9" "
IO g ™

These results are called Maclaurin’s Theorem, and they enable
us to develop a function in a series arranged according to the
ascending powers of the variable.
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133. To develop a.

Je=a?, S(0)=a’=1.
S'z=oa*loga, J'(0)=loga,
S"z=a*(loga)?, J"(0) = (loga)?,

Sz =a*(loga)™, S®(0)=(loga)",
f(n+l)x=az(loga)n+l’ f"'“’ﬂx:a"’(loga)"“.

By Art. 182, [1],

ki ‘ n+l 0z
+—(n+l) !(loga) afz,

2**t1(loga)"+! afr = ab a:log'a zloga zloga xloga xloga

(n+1)! 1 2 3 n a4l

No matter what value & may have, after n has attained a cer-
tain value in its increase, some of the factors of this product
will approach the limit zero, and the whole product will there-
fore have zero for its limit as » increases indefinitely, and

=1+ wloga+;(loga)2+§(loga)’+ ----- 1

for all values of z. If a=e, loga=1,

: 2 o ot
d =1 TLT T T 2
an, +itotsitnt [2]
Let =1, and [2] becomes
1,1,1,1
=14 — = e ; 3
e=t4i+o+oyt gt [_]

a result already established in Arts. 61 and 62.
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134. We can now test the accuracy of the provisional devel-
opments of sine and cosine given in Art. 124, (2) and (3). By
Art. 132, [1],

@, P

sinx=m—ﬁ+a_ﬂ+ ..... +R,
! o
h R= M +Y = T
where . atD !f :I:(n+l)!sm0:c .
an+1
— 0x. .
or :I:(n_H)!cos z

In either case, one factor sinfx or cosfx is between 1 and —1,
and the other approaches zero as n increases indefinitely ; there-

2 P 2D

fore, sinz=x—ﬁ+a—ﬂ+9_!_
ExaMpLE
. B, of B
Prove that wsm_l_ﬁ"‘ﬁ“é—!"'ﬁ_""'

185. By the aid of the Binomial Theorem, tan~'z and sin~'z
can be very easily developed.

D,tanlz =< 41_ ~=(1+2)"" (Amt. 71, Ex))

For values of z less than 1, (14 2?)~! can be developed by Art.
181,[2], (142)'=l—of4of—2f42f— o

Integrate both members.

1y g @ o 2
tan~e=C+=x 3+5 7+9

To determine our arbitrary constant C, let

z=0;
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0

then tan~10=C+ 0 — 37
and C=0.
Clpmg T 4T T2
e =r gt 7ty (1]

when z is less than 1; that is, when tan—'z is less than i

D,sin"'z= =(1—2%)-%, by Art. 71.

1
Ja-=)

For values of « less than 1, (1— 2%)~% can be developed by Art.
181, [2].

(o)l g g o+ hre 7 ¥ aaas
Integrating
sin“w=0+m+%%s+-;:—3%ﬂ+%:_§:_z “_;74. .....
‘When z=0,
sin~!2=0and C=0
sm“w=z+%§+¥%ﬂ+%%1+ ..... [2]

(1) Show that sin(z + k) is equal to the series

2 3 4
: sinw+% cos:c—g—! sin:v-—% oosw-}-% sing 4 oo
(2) Show that
mx , miax® | mixd

=Tt e
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136. Although the strict proof that any given function is equal
to the series obtained by Taylor’s Theorem requires the investi-
gation of the remainder after n 41 terms, it is often convenient
to obtain terms of the series in cases where the expression for
the remainder is too complicated to admit of the usual examina-
tion. When such a series is employed, it is to be remembered
that it is equal to the function in question only provided that
the function is developable. Sometimes the possibility of de-
velopment can be established by other considerations, and some-
times in rough work no attempt is made to fill out the proof of
the assumed equality.

ExaMPLES.
x
(l) Develop ‘].-'-—x"‘log(l-"Z).
3 4 5 6
Ans. 2:c—§:c’+§ a:“—za:‘-g-gz“.!. .....

(2) Obtain 4 terms of the development of log(1+ ¢).

z , o ot
Ans. log2+§+-2—s—-2m.

137. In the work of successive differentiation required in
applying Taylor's Theorem, a good deal of labor can often be
saved by making use of Leibnits’s Theorem for the Derivatives
of a Product. Let y and 2 be functions of . Represent
D.y, Dy, - Dry by ¢, y"+--y™ and D,2, Dj?e, .. D,*z by
2, 2", e £, -

© D(ye)=y'z +y7, '
D}(yz)=y"z +2y'2 +y2",
D,s(yZ) = y"'z + 3yu zr+ 33/'1" + yzm’
D,‘(yz): Yz 4 4y + 6y 2" + 4y 2"y

pe

Examining these results, we see that the coefficients of the terms
in the successive derivatives are the same as in the correspond-
ing powers of a binomial, and that the accents follow the same
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law as the exponents in the powers of a binomial. Following
the same analogy, we should have

D,ﬂ(yz) :..= y(n),e + ny("—D 2 + n_(n2;l1) y(n—z) 2

L 132 'gn —=2) yo-ngig ...

Assuming for the moment the truth of this equation, let us dif-
ferentiate both members. We obtain

D+ (yz) =y *Vz+ (n+1)y™2'+ (n—'zl,m yie
+ Sﬂ%ﬂ)yh—nzm_'_ ..... ;

but this is precisely what we should expect for the (n 41)st de-
rivative from the observed analogy. Hence, if our rule holds for
the nth derivative, it holds for the (n +1)st; but we have seen
that it holds for the 4th, therefore it holds for the 5th, and
therefore for the 6th, and so on; and it is in consequence
universally true. This rule is called Leibnitz’s Theorem, and is
formulated as follows :

D,"(yz) = y(”)z + ny('l-—l)z' n(n l) y(g_’)z"

$RO=DE=) .., [1]
2

188. Assuming that tanz can be developed, let us obtain a
few terms of the series. Here

Sr=tanz =y, A
Slz=y =secix, | . ‘
f'z=y" = 2secztanz = 2y'y, L
fMe=y"=2y"y +¥'Y), : "‘ /‘ |

STe=y"=2(y"y+2y"y'+9'y"),
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STz=y" =2(y"y+3y"y'+3y"y" +¥'y"),
Sre=y"=2(y"y+4¥"y'+ 64"y + 4y"y" + '),
Sre=ym"=2(y"y+5y"y'+10y" y" +10y"y"" +5y" ¥ +y'y"),
&c., by Leibnitz’s Theorem.
‘When z=0,

y=0, y'=0,

y=1, y' =16,

y'=0, y"=0,

y'=2, Yy =272,

' By Maclaurin’s Theorem

_ 2 16 272
tanx_a:+8—! z’+5—!z’+.ﬂx’+....

ExampLE.
Assuming that secz can be developed, show that
g, 2 52  6la°
secr=l+oitorter T
Indeterminate Forms.

139. The subject of indeterminate forms is readily dealt with
by the aid of Taylor’'s Theorem. Take the form -g Suppose
Jz and Fz are functions of @, continuous for values of & near the
particular value a, and fo and Fa are both equal to zero, to find
the true value (vide Art. 34) of % when z=a.

Call z—a=h,thenzx=a+h,
and we can develop fr and Fz by Taylor’s Theorem.
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So=Fa+h)=fa+1f (@+oh)

where ¢ is some number between zero and 1.
Fr=F(a+h)=Fa+hF'(a+0'h)

where 0<6¢'<1.

Sfe _ hf'(at6h) _ f'(a+6h)
ya y (a+ on)~ F'(a+0h)

since Ja=0 and Fa=0.

As z approaches a, k approaches zero ; hence 6k and ¢'/ approach

NP
=

x approaches a, is {—%, which, by Art. 34, is the true value of

% If fa=0, Fa=0, fla=0, and F'a=0,

zero as their limit ; consequently the limit approached by

it will be necessary to carry the development one step farther.

fe=fla+h)=fa+ hf'a+g_"f"(a+ah)=éﬁ'f"(a+ o),
% 2
Fo=F(a+0)=Fa+iFat L F'a+ o)=L F'atom,

fo_ ["(a+0h)
and Fz~ F'(a+0h)

!
which approaches <—— Lla as its limit as « approaches a.

Fll
ExAMPLE.
Show that, if fa, Fa, f'a, F'a, f"a, F"a, &c., f*=Va, and
P—Dg gll equal zero, the true value of f whenz=a is F:: a
~a

140. The reasoning of the last section does not apply when
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a=x, as then f(a+A) cannot be developed by Taylors
Theorem.

To find the true value of ‘i,—:{ when z = x, supposing that
P 4
Jr=0 and Fr=0 when z = x.

w _’I = 11
z
then /z=fl and F.r=P1. and
1 y y
7y 0
_y assumes the form — when y=0
0
Fl
y 1
D f-
. . [ "f.'l].=o

and its true value for y = 0 will be

[273)..

1 1 1 41 “
Dyf" =fl D'_::_—f’—? ‘
Yy y ¥y y

y!
1 1 1
DF-=—_—_F_.
"y ¥y
D, f =
But the value of when y=0
D,F v
is the value it approaches as y approaches 0.
1 1 41 1 :
Dfy =l Ty
?/ ?/ f’ z, ‘
1 l 1 Fz’
D,F_- Lgl pl
Ty ¥y Ty
but when y=0,r=0;

hence the true value of Iz when r=ow

is the value off when r=0o ;
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and the method of the last section holds, no matter what the
value of a.

141. It was shown in Art. 35, that the form % could always
be reduced to g and treated as above. Let us consider a general

example. Suppose fa=w and Fa= o0,

required the true value of % when 2= a.

1
%:Eégwhen r=a.
1 .
I3

Differentiate numerator and denominator. 4

1___1

Sz (fx)?
1_ 1

‘Pz (Fz)?

D, Sz,

Flg.

Hence we have, when r=a,
1 "

and

the value required. Therefore the form 3 can be treated directly
by the same method as the form g In dividing both members
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. Jfr_ fac *F'y Jr
of the equation j Tz by R
we have assumed that the true value of ;—; , when
T=a

is neither 0 nor . Suppose the limit approached by %—‘; as
« approaches a is 0, and that fx and Fx increase indefinitely.
Form the function M

Fx

Its true value when r=a, is, of course, 1;
but when , z=a, it assumes the form 2 ;

hence its true value when z=a,

must be the limit approached byf—'—%&c as ¢ approaches a,
. limit [ /'
which is l+a:—-a [F'a:]
limit [ /' _ limit .
Therefore, ;Zla Fal x] 0= ;mla [%v:] by hypothesis.

If the true value of Iz when z=a
is infinite, of course the true value of its reciprocal % will be

o
zero, and will equal [f_':] ;

hence [-F;x]z—d— ®= [1%7],:.’

and the method of determining the form & = established at the
begmnmg of this section, is of universal apphcation.
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142. The forms «°, 1%, 0°, can all be reduced to one of the
forms already discussed, if we make use of logarithms. It is to
be observed, that these forms to be indeterminate must all occur
as limiting forms of a function of two functions; and, in order
that the forms may admit of being determined, the two functions
must depend upon the same variable.

Let - u=(Fz)*.
Suppose, when z=a,
Fr=cw and fx=0;
to find the true value of » when = a.
logu=fr.logFx =0 X  when z=a,

and may be determined by the method of Art. 85.

ExXAMPLES.

(1) Show that 1, 0°, can be made to depend upon the forms
o X 0 and 0(—). '

(2) Obtain a method for dealing with the form oo — oo.
Find the true value of the following functions : —

3) % when z=1. Ans. 1.

4) e's;::' “ z=0. Ans. 2.

R

(5) ”_ﬁw_‘” “« z=0. Ans. —3.

(6) 1= ‘=1, Ans. —1.
logz logx

(1) £=2008z+e 4y, Ans. 2.

zsinx
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C)
(9)

(10)
(11)
(12)
(13)
(14)
(15)

- (16)

" DIFFERENTIAL CALCULUS.

xtanx—gsecw when x=§.
2‘sin22. “ g=oo.
(ad—1)z “ g=oo
a ¥ 3 -
;,'l‘l) =0
O
tanz\} “«  p=0.
x .
tanz 5,!‘ “  p=0.
x
tanx é “ p=0.
z
in ztas T
sin 2

Maxima and Minima.

[ART. 143.

Ans. —1.
Ans. a.

Ans. loga.

Ans. e®.

Ans. 1.

Ans. 1.

Ans. el.

Ans. 1.

143. Taylor’s Theorem enables us to give a very simple and
complete treatment of the subject of maxima and minima of a
a single variable.

Let fx be a function of =, finite and continuous for values of
« near the particular value a.-

Call

z=a+h.

Sa+)=fa+1fa+ L f'at o).

fat+n)—fo=ifatLria+om).
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In order that fa should be either a maximum or a minimum,

S(@+1)—7a

must have the same sign for small values of & whether 4 is posi-
tive or negative. If this sign is minus, fa is & maximum value
of f; if plus, a minimum value (vide Art. 39).

If f'a does not equal zero, we can take a value of A so small,
that, for it and all smaller values,

h
af' "(a + 6h)
shall be less than f'a. The sign of
h8
hf'a + 31 S"(a + 6k)
will then, as & approaches zero, ultimately become and remain

the same as the sign of hf"« ; but the sign of %f"a changes with the
sign of &, so that fa can be neither & maximum nor a minimum.

144. Suppose Sla=0,

then J(a+h) —fa;gf"a+§;f"'(a+ o0h)
! h
= h’[f;_'_;’ + 2 f"(a+ 0h)] ;
as h approaches zero E?_' J"(a+ 6h)

1"
will, in the end, become and remain less thanf2—:1 and the quan-

tity in parenthesis will have the same sign as fMa. As A? is
necessarily positive for all values of &

f@+8)—fa

will then be negative for small positive and negative values of &,
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if f"a is negative, and will be a maxzimum; if f''a is positive,
Ja will be a minimum.

145. It can be easily established by an extension of the rea-
soning of the last section, that, if the first derivative that does
not vanish when x = a i8 of odd order, fa is neither a maximum
nor a minimum ; that, if it is of even order and negative,-fa is a
maximum ; if of even order and positive, fa is a minimum.

EXAMPLES.

(1) A body moves with different uniform velocities in two
different media separated by a plane, required the path of quick-
est passage from a given point in the first medium to a given
point of the second. It is easily seen that the required path
will lie in a plane passing through the two given points and
perpendicular to the plane separating the two media.

Let ACB represent any such path from 4 to B. Draw a
normal to the plane at C' and the perpendiculars p and ¢. Call

DE =c,

and let v, and v, be the velocities in the first and second media
respectively.
AC = psect,

CE = ptand,
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BC = g¢secé,,
DC = gtané,,
ptand 4 gtanéb, =c.

AC _ psecd
n - n

is the time required to pass from 4 to C;

E __gsech,
Vg - Vg

is the time required to pass from C to B;

t__psec0+ gsect,
- n Vg

is the function we wish to make a minimum. ¢ and 6, are the
only variables in ¢, and they are connected by the relation

ptand 4 gtanb, = c.
D =£secotano+gsec01tan01Dool.
"y Vg
Differentiate ptand 4 gtané, =c.

psec’d + gsec’6,Dy6,=0,

psecto

0= —
Dy r gsecto,

psectd

p q
Do}t: Flsecotano—;,sec.(),tanﬂl gseco;

Dyt must equal zero in order that ¢ may be a minimum. Ex-
press everything in terms of sine and cosine.
p sind g sin6, p cos’d, _

v, cos%0 v, cOs®0, ¢ cos’l

‘

’
- .
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gind sin6,

— = ,
1 Vs
sind _ v
sinf, v,

By taking Dgt and substituting

gind v,

0 "
sinf; v,

we should obtain a positive result ; so that this relation between

the angles gives the path of quickest passage required. This

result is the well-known law of the refraction of light, and our

solution establishes the fact that a ray of light, in passing from

a point in one medium to a point in another, takes the course

that enables it to accomplish its journey in the least possible
time.

(2) What value of z will make sin®xcosz a maximum?
T
Ans. w=z

(8) What value of # will make sinx(1+ cosz) a maximum?
n

AM. = §-

(4) Show that 2? is a maximum when z=e.

(5) A statue a feet high stands on a column b feet high ; how
far from the foot of the column must an observer stand that the
statue may subtend the greatest possible visual angle?

Ans. Vb(a+b) feet.

(6) Required the shortest distance from the point (%,y,) to

the line Az + By+ C=0.
; Az + By, + C'.
JA+ B
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CHAPTER X.
INFINITESIMALS.

- 146. An infinitestmal or infinitely small quantity is a variable
which ts supposed to decrease indefinitely ; in other words, it is @
variable which approaches the limit gero.

‘What we have called the increment of a variable has, in every
case considered, been such a quantity ; and what we have called
a derivative has been the limit of the ratio of infinitesimal incre-
ments of function and variable.

147. When we have occasion to consider several infinitesimals
connected by some law, we choose arbitrarily some one as the
principal infinitesimal.

Any infinitesimal such that the limit of its ratio to the princi-
pal infinitesimal is finite, is called an infinitesimal of the first
order.

An infinitesimal such that the limit of its ratio to the square
of the principal infinitesimal is finite, is called an infinitesimal
of the second order.

An infinitesimal such that the limit of its ratio to the nth power
of the principal infinitesimal is finite, is called an infinitestmal
of the nth order.

Let a represent the principal infinitesimal, and «; any infini-
tesimal of the first order, a; of the second order, a, of the nth
order. Then, by our definition,

|
limit == K,
K being a finite quantity.
a
;‘ =K+,
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where ¢ is an infinitesimal (Art. 7),
ay=a(K+¢) .‘

limit :—: =K'; -

a_s=Kl+eI’

d’
ay=a*(K'+¢');
a,=a" (K™ 4 ™),

EXAMPLES.

Show, by the aid of these expressions, that the limit of the
ratio of any infinitesimal to one of the same order is finite; o
one of a lower order is zero; to one of a higher order is infinite.
That the order of the product of infinitesimals is the sum of the
orders of the factors, and that the order of the quotient of infini-
tesimals may be obtained by subtracting the order of the denomi-
nator from the order of the numerator.

Show that, if the limit of the ratio of two infinitesimals is
unity, they differ by an infinitesimal of an order higher than
their own.

148. The sine of an infinitesimal angle is infinitesimal ; for,
as the angle approaches zero, the sine approaches zero as its
limit. ‘

If we take the angle as our principal infinitesimal, the sine is
an infinitesimal of the first order ; for we have seen that

limit [sma] -1, . (Art. 68).

a=0 a
The vers a is infinitesimal if « is infinitesimal, for

versa=1—cosa;
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and as a=0, cosa=1;
hence versa=0.

It is an infinitesimal of a higher order than the first, for we have

imit [ 1 — cos
seen that irnit [——a]= 0, (Art. 68).

a

Let us see if it is of the second order; that is, let us see if

limit [l— ‘:0_8“] is finite. 1= °%% gssumes the form g when
a

a=0 a?

a=0, and we can find our required limit by the method of Art.
139, which gives us % as the value sought. Therefore, when a is

infinitesimal, versa is infinitesimal of the second order.

ExaMPLES.

Taking a as the principal infinitesimal, show that
(1) tana is an infinitesimal of the first order.

(2) a—sina is an infinitesimal of the third order.
(8) tana— a is of the third order.

149. Let y be any function whatever of z, if we give x an
infinitesimal increment 4x, the corresponding increment dy of y
will be an infinitesimal of the same order as 4x, unless for par-
ticular single values of x.

P A
To establish this proposition, we must show that ‘};nito [A—Z]
s A
is finite. A};n_]__'_% [2%] cannot be zero, except for single values
o e A
of z ; for, suppose it could become and continue zero ; ‘}:T% [Z%]
is D,y, and we have seen (Art. 38) that D,y shows the rate at
which y is changing as # changes. If D,y becomes and remains
zero, y does not change at all as # changes; and, therefore, is
not a function of x, but a constant.

¢
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Al;r_n:t:) [ AZ] cannot become and continue infinite ; for, in that

case, ‘};;m_ tb [ 4.?/] would be zero, D,x would be zero, and z,

regarded as a function of y, would be constant.

‘

Since Al:mto [ y:l can be neither zero nor infinite, it must be

finite, and dy and dx are of the same order.

150. If the coordinates of the points of a curve are expressed
as functions of a third variable a, the distance between two infi-
nitely near points of the curve is an infinitesimal of the same order
as the difference between the values of a to which the points corre-

spond.
The ordinary equations of the cycloid,

z=a0—asin0}
y=a—acoso

are a familiar example of the way in which the coérdinates of
points of a curve may be expressed as functions of a third varia-
ble. In the case of any curve, it is obvious that this may be
done in a great variety of ways. Any two equations containing
X, y, and a that will reduce on the elimination of a to the ordi-
nary equation of a given curve, can be used as equatwns of that
curve.
For example :

r=2a
) are equivalent to x —2y4+4=0;
y= a +2
*=acosa
are equivalent to 2% 4 y* = a?;
y=asina
Z=acosa

are equivalent to 2 + l, =1;
y="bsina
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Tr=aseca

: 2§
}are equivalent to 2 5= 1.

y=btana

The proof of our proposition is as follows: Let a and a + da
be the two values of a in question, and (,y) and (2 + 4,y + 4y)
be the two corresponding points. The distance D between these
points will be, if we use rectangular codrdinates, V' (dz)*+ (dy)®.

. dimit [ D], o .
We wish to prove that -, . 0 [A_aJ is finite.

P A PR A
and, by Art. 149, Jmit [Z”f] and Jmit [ j’] are both finite ;

a da=0| da

hence lim.it D is finite, and D is an infinitesimal of the same
da=0| da

order as da.

151. If two curves are so connected that the points of one cor-
respond to the points of the other, so that when a point of the first
curve is given, the corresponding point on the second is determined,
the distance between two infinitely near points on the first curve is
an infinitesimal of the. same order as the distance between the
corresponding points of the second curve. For, if we suppose
the coordinates of the points of the first curve expressed as
functions of some variable @, the codrdinates of the points of
the second curve can also be regarded as functions of a; and,
by Art. 150, each of the distances in question will be an infini-
tesimal of the same order as da, and each will therefore be of
the same order as the other.

152. If a straight line moves in a plane according to some law,
80 that each of its positions corresponds to some value of a varia-
ble a, the angle between two infinitely near positions of the line is
an infinitesimal of the same order as the difference between the
corresponding values of a.
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Suppose lines drawn through a fixed point O parallel to the
moving line in its different positions. From O, with the radius
unity, describe an arc. Consider any two positions of the
moving line, and the corresponding lines at O, we wish to

prove that the angle ¢ between the latter is of the same order
as the difference between the values of a to which the positions
of the moving line correspond. As all the lines at O correspond
to values of a, the points where they cut the circle correspond
to values of a, and, by Art. 150, the distance AB between two
of the points supposed to be infinitely near is of the same order

as da. 3 AB s equal to sing; therefore sin g, and consequently

g itself is an infinitesimal of the same order as da, and if

limit | & |ig fnite. limit | @ |. o .
da=0 I:Z-a] is finite, da=0 [271] is finite.

153. A simple geometrical example of an infinitesimal of the
second order is the perpendicular let fall upon the tangent at any
point of a curve from a second point of the curve infinitely near
the first.

, If, in our figure, the distance PP’ is taken as the principal
infinitesimal, P'T is readily seen to be of a higher order than

the first, for
PE =ging;

prp
and, since ¢ = 0 as P'= P, its sine = 0 ; hence

PP'=0| PP ’
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and P'T is an infinitesimal of an order higher than that of PP,
by Art. 147, Ex.

To show that P'T is of the second order, let us consider dif-
ferent secant lines drawn through P, PT being itself one of
these lines. Obviously, each one of these lines is determined
in position when the abscissa of its second point of intersection
with the curve is given; and therefore the angle between any
two infinitely near secant lines, as PP’ and PT is an infinitesi-
mal of the same order as the difference between the correspond-
ing abscissas, by Art. 152 ; but the distance PP’ is of the same
order, by Art. 150 ; therefore, ¢ and PP are of the same order,
that is, of the first order; sing is also of the first order, by Art.
148 ; hence P'T, which is equal to PP'sing, is of the second
order (Art. 147, Ex.).

~

154. To determine the tangent at any given point of a curve,
we draw a secant line through the point in question and any
second pomnt on the curve, and seek the limiting position ap-
proached by this line as the second point approaches the first;
or, in other words, we seek the limiting position of the line join-
ing the given point with an infinitely near point of the curve. It
can be shown that this is also the limiting position of any line
passing through the given point and a point whose distance from
the second point of the curve is an infinitesimal of a higher order
than the distance between the two points on the curve.

Let P and P be two infinitely near points on p M
the curve, and let P’M be an infinitesimal of a
higher order than PP', then the limiting position '
of PP' as P'=P will be the same as the hmntmg position of
PM; for, in the triangle PMP,
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P’M=sin¢ .
PP~ sing’

hence sing = -I-’-L[ sin¢ ;

prp

P —

7

. ig. limit
and as by hypothesis, PPe 0[

Py [sing] must be zero. Therefore

limit
pP=o [#1=0,

and the two lines, PP’ and PM, approach the same limiting

position.

155. This principle is frequently of service in problems con-
cerning the position of tangent lines. For example: Suppose
perpendiculars let fall from a fixed point to the tangents of a given
curve, to draw the tangent at any given point of the locus on which
the feet of these perpendiculars lie.

Let M and M’ be two infinitely near points of the given curve,
and O be the given point from which the perpendiculars are let
fall; then P and P’ are two infinitely near points of the locus in
question, and the required tangent at P is the limiting position
of the line joining P and P’. Draw through M the line MP"

P’ oM

P

P,

parallel to the tangent M'P'. If we take MM’ as our principal
infinitesimal, PP is an infinitesimal of the second order, by
Art. 153, and PP’ is of the first order, by Art. 151; conse-
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quently (Art. 154) it will answer our purpose to find the limit-
ing position of the line joining PP" ; but, since MP"'0O and MPO
are both right angles, P" lies on the circumference of a circle
described on OM as diameter, and the required limiting position
of PP" ig that of a tangent to this circle at P, which is therefore
the required tangent. Hence to obtain a tangent to the locus in
question at any given point, we have only to join the correspond-
ing point with O, to erect a circle on this joining line as diameter,
and to draw a tangent to the circle at the given point. Of course,
the normal to this locus at the given point bisects the joining
line OM.

156. Let us consider the locus of the feet of perpendiculars let
fall from the focus of an ellipse upon the tangents to the curve.

Since the tangent to the required locus at P is tangent to the
circle on FM as diameter, the normal at P passes through the

vy

P A 0 F

centre C of the circle. Draw the focal radius F; M. Since the
tangent to an ellipse makes equal angles with the focal radii
drawn to the point of contact,

TMF,=PMC;
PMC=MPC,
because MC and CP are equal ;
.*« MPC =TMF,,

and PO is parallel to MF}; it must then divide MF and I, F
proportionally ; and as it bisects MF, it also bisects F, F, and
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consequently passes through the centre of the ellipse. Since every
normal to the required locus passes through the centre of the
ellipse, the locus is a circle concentric with the ellipse. It is
easily seen that it must pass through the vertices of the ellipse.
It is then a circle on the major axis of the ellipse as diameter.

ExAMPLE.

Show that the locus of the foot of a perpendicular let fall from
the focus upon any tangent is a circle on the transverse axis as
diameter in the hyperbola; is the tangent at the vertex in the
parabola.

PROBLEM.

157. Upon each normal to a plane curve a point is taken at a
constant distance from the intersection of the normal with the
curve; to find the tangent at any point of the locus thus formed.

Let M and M’ be two infinitely near points on the given curve,
P and P the corresponding points of the locus ; let

MP=MP=a;

call the angle between the normals, ¢. Draw MM" and PP"
perpendicular to the second normal. The required tangent is the

limiting position of PP, and the tangent at M is the limiting
position of MM'. TIf MM is taken as the principal infinitesimal,
PP and ¢ are of the first order and M’M" of the second (Arts.
151-158). P'P"is of an order higher than the first, for
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PIPII= MIMII+ MIIPII_ a,
M'P"=acosg;
hence P'P'= M’M”——\a(l —cosg).

¢ being of the first order, 1— cos¢ is of the second order by
Art. 148 ; and as M'M" is of the second order, P'P” is of at
least as high an order as the second. By Art. 154, our required
tangent will be the limiting position of PP”, and the tangent at
M will be the limiting position of MM" ; but PP" and MM" are
parallel always; therefore their limiting positions are parallel,
and our required tangent is parallel to the tangent to the given
curve at the corresponding point, and the curves are what are
called parallel curves.

PROBLEM.

158. An angle of constant magnitude is circumscribed about a
given curve; to draw a tangent to the locus of its vertex.

The required tangent is the limiting position of the secant
line PP. Draw through M and N lines MP", NP", parallel
to the tangents at M’ and N'. It can be shown that the sides,
and therefore the diagonal, of the parallelogram P'P” are in-
finitesimals of a higher order than PP', and therefore that the re-

quired tangent can be found as the limiting position of PP". Since
the angles at P and P" are equal, the point P" lies on a circle cir-
cumscribed about MPN'; the limiting position of PP" is there-
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fore the tangent to this circle at P. Qur solution is, then, draw
a circle through the vertex of the circumscribing angle and the
points of contact of its sides, and the tangent to this circle at
the vertex of the angle is the tangent required.

ExAMPLE.

Show that the locus of the vertex of a right angle circum-
scribed about an ellipse or an hyperbola is a concentric circle ;
about a parabola is the directrix.

159. In the preceding examples, the advantage we have
gained in the use of infinitesimals has arisen from the fact that
we have been able to replace one infinitesimal by another related
to it and more simply connected with the other values consid-
ered in the problem. The possibility of such substitutions, and
the limitations under which they can be made, form the subject
of the following two theorems, which are of prime importance,
and lie at the foundation of the Infinitesimal Calculus.

THEOREM.

160. In any problem concerning the limit of the ratio of two
infinitesimals, either may be replaced by any infinitesimal so related
to it that the limit of the ratio of the second to the first is unity.

ProOF.
Let a, 3, a', and 3 be infinitesimals so related that
) 1 ’
limit® =1 and limit® =1.

a F;
’

Then will limit2 = limit <.
I -4

S==.Z.L identically ;
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)
hence limitZ = limit % x limit 2 x limit2,
8 g a

a

g

(
limit /'.; = limit%, X 1 x 1= limit Q.E.D.

THEOREM.

161. In any problem concerning the limit of a sum of infini-
tesimals, provided that this limit i3 finite, any infinitesimal may
be replaced by another so related to it that the limit of the ratio of
the second to the first is unity.

Proor.
Let ay 4 g 4 ag 4 oeee + a,

be a sum of infinitesimals of such a nature that the number of
the terms increases as each term decreases in absolute value, so
that the limit of the sum is some finite quantity.

Let £y, B3, B3y -+++ B, be a set of infinitesimals so related to the first

B B
set that limit-ﬂ—l =1, limit—==1, &c., limit—=1,
a ag a,

B B - B,
then ;1=1+s,, ‘—l-:=1+e,, &e.y F=1+e,

€14€9y+++ €, being necessarily infinitesimal (Art. 7).

B=a,+ ay¢,

By= a3+ ages,
ﬂn=an+ Gy €y
Bit Byt By 4 oo 4 By= oy + ag + ag + coeer + a,,
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Let » be such a variable that at any instant it shall be equal to
the greatest in absolute value of the quantities e;,eq,---0¢,. Of
course, since each of these approaches zero as its-limit, » must
also approach zero as its limit ; i.e., 7 is infinitesimal.

a, 6, 4 ageg 4 ageg 4 - +a;€-<’7(¢l+“’+“s+ """ +a,),

hence By + B3+ By + o + B, — (a1 + 05+ ag+ - +a,)

By hypothesis, limit (@) 4 a3+ -+ 4 @) is finite ;
therefore, limit of (e + oz + ag+ - +a,) i8 zero.
Consequently

limit (B + By + By + -+ + B,) =limit (&) + ag + ag + - + a,).

Q.E.D.

162. If two infinitesimals differ from each other by an infini
tesimal of a higher order, the limit of their ratio is unity.

For, let d—a=g¢,
where ¢ is of a higher order than «;

d=a+e,

’
a €
=142,
a a

!
limit > =1 + limit— ;
@ a
but, by hypothesis, limit < = 0, (Art. 147, Ex.);
a

’
therefore limit% =1.
. a
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It follows that the theorems of Art. 160 and Art. 161 can be
stated as follows : —

In finding the limit of a ratio, or the limit of a sum of infini-
tesimals, any infinitesimal may be replaced by one that differs
Jrom it by an infinitesimal of a higher order. Or, in finding
the limit of a ratio or of a sum of infinitesimals, any infinitesimal
term may be neglected without in the least affecting the result, pro-
vided that it is of a higher order than the terms retained.

163. Let us take the problem of finding the direction of the
tangent to a parabola.

The tangent T"T at P is the limiting position of the secant
through P and P’. Draw the focal radii FP and FP', and the
perpendiculars PR and P'S to the directrix. Draw PM and

Ol F

PN perpendicular to F/P' and P'S respectively, and with F as a
centre, and with the radius FP, describe the arc PQ.

Take PP' as the principal infinitesimal, then P'M and P'N are
of the first order, since the limit of the ratio of each of them to
PP is finite.

PQ is of the first order, by Art. 151, and M@ is of the second

order, by Art. 153. :
P'S= P'F,

from the definition of a parabola ;
PR = PF= QF H
‘. P'N=P'Q.

P'M

coSPP'F=—— P
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]
cos PP'S '=€)—1g,
cos T'PF _ |imit [ cos PP'F] _ limit [ P'M
cosT"PR P'=P| cosPP'S P=P| PN

_ limit [P'Q]_, . .
"P’ﬁP[P’N , by Art. 162

.. T"PR=T'PF,

and the tangent at any point of a parabola bisects the angle
between the focal radius and the diameter through the given

point.

164. To find the area of the sector of a parabola included be-
tween two focal radii. Take points of the parabola between the
extremities of the bounding radii, and join them with the focus,
thus dividing the area in question into smaller sectors, of which
the sector FPP' in the figure of the last article may be taken as
a type. Draw perpendiculars from the extremities of the bound-
ing radii to the directrix, and consider the external area bounded
by them, the directrix and the curve ; draw perpendiculars from
the intermediate points already described to the directrix, and the
external area will be divided into smaller curvilinear quadrilate-
rals, of which PP'RS is one. No matter how close together the
intermediate points are taken, the external area is the actual sum
of these small curvilinear quadrilaterals; it is then the limit of
their sum as the number is indefinitely increased. If the distance
between any two of the points, as PP’, is taken as the principal
infinitesimal, PN, P'N, PM, P'M, are all infinitesimals of the
first order, since "the limit of the ratio of each of them to PP’
is the sine or the cosine of a finite angle. The area of PP'RS
lies between P'S x PN and NS x PN, and is therefore an infini-
tesimal of the first order. Hence we have to consider the limit
of a sum of infinitesimals where the limit is finite, and we can
replace any one by one differing from it by an infinitesimal of a
higher order than the first. The rectangle PRSN differs from
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PP'RS by less than a rectangle on PN and P'N; that is, by less
than PN X P'N, an infinitesimal of the second order. Therefore
the required external area, which is the limit of the sum of infini-
tesimal areas of which PP’ RS is a type, and which we shall indi-
cate by limit ZPP'RS (2 serving as a symbol for the word sum),
is equal to limit ZPRNS.

The given sector is equal to the sum of the smaller sectors of
which FPP' is a type = limit SFPP/, each term here being an
infinitesimal of the first order. Draw the straight line PQ. The
triangle FPQ differs from the sector FPP'by less than a rect-
angle on PM and MP', which would be of the second order, and
may therefore replace FPP' in the expression for our required

area.

limit %‘; =1, by Art. 163;
consequently PM and PN differ by an infinitesimal of higher
order than the first, and the triangle FPQ differs from one-half
the rectangle PRNS by an infinitesimal of higher order than the
first, and may be replaced by 3 PRNS.

‘We have then, external area = limit ZPRNS,
given sector = limit 23 PRNS ;

and the given focal sector is equal to one-half the area bounded
by the curve, the directrix and perpendiculars let fall from the
extremities of the arc of the given sector to the directrix.

Infinitesimal Arc and Chord.

165. Let us consider the relation between the lengths of an
infinitesimal chord and its arc.

Take the chord PP' as the principal infinitesimal, and draw
the tangents PT and P'T. The arc PP'is r
less than PT+ P'T and greater than the j/ i y
chord PP'. The angles ¢ and ¢' are infini- ~. C/EM {

tesimal.
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=22
P'M
co8¢'= Hi

limit cose =1,

and limit cose'=1;
. PM
therefi limit— =
erefore i BT
. .. P'M
d — =1.
an limit P
Thus PM=PT+~y
and ' P'M=PT+q,

where 7 and 7' are infinitesimals of a higher order than the first,
by Art. 147, Ex.

PM+ P'M=PT+ P'T+y+7,

or the difference between the sum of the tangents and the chord
is of a higher order than the first. The difference between the
arc and the chord is less than this, therefore the limit of the ratio
of an infinitesimal arc to its chord is unity.

166. It is customary to say roughly that lines which make with
each other an infinitesimal angle, that is, lines which approach
the same limiting position, coincide, and that finite values which
differ by an infinitesimal or infinitesimal values which differ by
an infinitesimal of a higher order, that is, values such that the
limit of their ratio is unity, are equal; and this way of speaking
is very convenient, especially for preliminary investigations. It
is important, however, to be able to put a proof given in this
form into the more exact language of limits.

It is easily seen from what has just been said, that the line
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Joining two infinitely near j)oints of any curve, can, speaking:
roughly, be regarded at pleasure as chord, arc, or tangent, so that
an infinitesimal arc can be treated as a straight line.

167. As an example of this loose form of proof, let us show
that a tangent to an ellipse makes equal angles with the focal
radii drawn to the point of contact.

Let P and P' be two infinitely near points of the ellipse, then
PP' ig the tangent in question. From F and F' as centres, draw

T
P
P
A B
F F

the arcs PA and P'B; PA and P'B being infinitesimal arcs, are
straight lines, and PAI” and P'BP are right angles, since the
tangent to a circle is perpendicular to the radius drawn to the

point of contact.
F'P+ PF=F'P'+ P'F,

by the definition of an ellipse. Take away from the first sum
F'P + BF, and we have left PB; take away from the second
sum the equal amount F'4 4 P'F, and we have left P'4;

. PB=P'A;

and the right triangles PAP' and PBP' have the hypothenuse
and a side of the one equal to the hypothenuse and a side of the
other, and are equal ; and the angle

FPP'=F'P'P;

but the lines 7' P’ and F'P coincide, so that the angle F'P'P is
the same as the angle F'PT; and

.. F"PT = FPP',

and the tangent makes equal angles with the focal radii. Q.E.p.
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ExAMPLE.

Prove that a tangent to an hyperbola bisects the angle between
the focal radii drawn to the point of contact. :

168. To find the area of a segment of a parabola cut off by a
line perpendicular to the axis. Compare the required area with
the area of the circumscribing rectangle. We can regard the

/
p
T

OIFS U

first as made up of the infinitesimal rectangles of which PMUS
is a type, and the second of the corresponding rectangles of
which QNPR is one. Draw the directrix.

PF=8D and DO= OF,
by the definition of the parabola ; but
PF=FT by Art. 163 ;
<. TO=08.
The triangles P'MP and PST are similar, and
P'M__PM_ PM,

PS ST 208’

hence PMx PS=208 x P'M=2PRQN,
or rectangle PU=2PQ;
. SPU=23PQ,
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and the segment in question is twice the external portion of the
circumscribing rectangle, and, therefore, is two-thirds of the
whole rectangle.

ExAMPLE.

Prove the theorems of Arts. 167, 168, strictly, by the method
of limits.

169. The properties of the cycloid can be very simply and
neatly obtained by the aid of infinitesimals ; though, for this pur-
pose, it is better to look at the curve from a new point of view.

Let a fixed circle equal to the generating circle be drawn tan-
gent to the base of the cycloid at its middle point; through the

A

Q

N

4 N B

generating point P, draw PQD parallel to the base. From the
nature of the cycloid, the arc

PN=ON and OB= ACB,
PQ=NB=OB— ON=ACB— QB= ACQ.

Hence points of the cycloid can be obtained by erecting perpendicu-
lars to a diameter of a fixed circle, and extending each until its
external portion is equal to the distance along the arc of the circle
JSrom the perpendicular in question to a given end of the diameter.

170. The tangent to the cycloid passes through the highest point
of the generating circle.
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M
<

4

Rough Proof. — Let P and P’ be infinitely near, then PP is
the required tangent ; through P’ draw an arc parallel and simi-
lar to QQ'. This arc may be regarded as a straight line. The
triangle PP'M is isosceles, since

QP= ACQ and MQ = P'Q'= ACQ,
hence PM = QQ'=MP';
.*. the angle PP'M = P'PM.
P'M is parallel to the tangent at P to the generating circle, hence
PP'M=TPT,

and PT bisects the angle MPT", bisects the arc PT'S, and con-
sequently passes through the highest point of the generating
circle. Q.E.D.

Strict Proof. —Draw the chord P'M, and regard PP’ as a
secant line ; in the triangle PP'M we have

sin PP’M_ PM
sinTPM P'M

PM

sin PP'M _ .
P'M

Sn TP mit

.. limit

The arc PPM = PM,

and the chord P'M differs from the arc by an infinitesimal of a
higher order than that of the chord.
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o s PM . .. PM
e llmlt m: llmlt m=l,
hence limit PP’ M = limit TPM.

The limiting position of P'M is the tangent PT";
.. limit TPQ = limit TPT",

and the tangent passes through the highest point of the generat-
ing circle.

The Area of the Cycloid.

171. Rough Investigation. — Circumscribe a rectangle about
the cycloid, and its area is evidently equal to the circumference
of the generating circle multiplied by its diameter; that is, to
four times the area of the circle. The area of the cycloid is

Na b T A
L/ \
/1 >(/
f/d

NN

B

this area minus the area of the external portion of the rectangle.
The external area A NO may be divided into trapezoids, of which
abPP' is any one. The tangent PP’ passes through the highest
point of the generating circle, and is a diagonal of the rectangle
TaPc, Tc being a diameter. From geometry,

abP'P= cdP'P,

which is equal to Qg ; therefore the sum of the trapezoids abP'P
is equal to the sum of the corresponding rectangles Qg, or the
external area ANO is equal to the semi-circle ACB: but ANO
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is half of the external portion of the circumscribing rectangle ;
consequently, the area of the cycloid is three times the area of
the generating circle.

Strict Proof. — The external area is the sum of the curvilinear
quadilaterals of which abP'P is any one ; that is,

area = JabP'P = limit ZabP' P = limit Zabh P,
for abhP — abP'P<eP'hP,

which is of the second order. P’'P" is of the second order, since

Na bbb T A
>
A ¢ \
P’ P'd 0
€. Q .
c Q
+ / i
(v
B

it is proportional to the distance from P’ to the tangent at P
(Art. 153); therefore bhh'd' is of the second order, and

limit Sabh P = limit Zab'k' P.
ab'h' P = edcP = Qy,

hence the external area = limit Qg = area of ACB.

Length of an Arc of the Cycloid.

172. Rough Proof. — The arc AP is equal to the sum of the
infinitesimal chords of which PP’ is one. The chord AQ is the
sum of the differences between each chord and the one drawn to
a point of the fixed circle above the point in question and in-
finitely near it; @S is such a difference, hence

arc AP = PP’ and chord 4Q = X@QS.




Cuar. X.] INFINITESIMALS. 178

1 4
T
v 7o
N
PP’ and QR are equal, @QR= Q' RQ, by Art. 170,

and Q@ R is isosceles. 'S, an infinitesimal arc described from
A as a centre, may be regarded as a straight line perpendicular
to QR, and therefore bisects @R, and

PP'=2Q8,
SPP'=2XQ8.
AchP: 2 chord AQ.
The arcAO0=2A4B,

and the whole arc of the cycloid is eight times the radius of the
generating circle.

Strict Proof. —P'P", @ T", and US are infinitesimals of the
second order, each being proportional to the distance from a point

VAN

of a curve to the tangent at a point infinitely near. Vv is also
of second order, as it is the projection of @' T"' on AQ.
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The arc AP = limit PP’ = limit ZPP",

since, in triangle PP'P",

PP — PP'<P'P".
The chord AQ=2Q8S ;

= limit FQS = limit QU =1limit TQ V.

_ But the triangle QT"R is isosceles, hence

QV=3QR=}PP";
and, as arc AP = limit *PP",

arc. AP = 2chord A Q. ' Q.E.D.

Radius of Curvature of the Cycloid.

173. Rough Investigation. — The centre of curvature for P is
the intersection of the normal at P with the normal at P'.

PX, P'X, and PP are parallel to @B, Q'B, and @S respec-
tively, hence the triangles PP'X and @SB are similar. The angle

A

D ¢

Q is a right angle, the angle B is infinitesimal ; the angle Q@SB
differs from a right angle by an infinitesimal, and may be reé-
garded as a right angle. Therefore, by Art. 172,

QS =} PP,
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and consequently, QB=}PX;

and the radius of curvature is twice PN, the portion of the normal
within the generating circle.

Strict Proof. — The centre of curvature is the limiting posi-

tion of X.
T 4

¥
DY )

o N
INNX

PP'X’ is similar to QRB, hence

b Y %

Zgl Z};' and limit ];21{2' = limit 1; R 1

Let PP’ be the principal infinitesimal, then P'P" is of the second
order ; therefore,in (1), PX can be substituted for PX'. RQ'S

RS_Q'S,
is similar to BQR, hence QE— QB

QR and QS8 are infinitesimal, @B is finite, RS is of the second
order, and @S can be substituted for QR in (1), and

PX_. . PP"
= limit —— :
limit QB '1m1 o8
P"
but, by Art. 172, limit _Q_S- =2;

*. limit PX =2QB = 2PN. Q.E.D.
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Evolute of the Cycloid.
174. Extend the diameter 7N to N', making
NN'=TN

and draw a circle on NN’ as diameter. The centre of curva-
ture X, corresponding to P, will lie on this circle, since '

PX =2PN.
T A
———
P
0 N B
X
B N o'

Draw a tangent to the second circle at N’, drop a perpendicular
from O to this tangent, and lay off B'0’ equal to one-half the
circumference of the generating circle.

The arcPN=ON=B'N';
. the arc N'X = N'0',

and X lies on a cycloid equal to the given cycloid, having its
origin at O' and its highest point at O, and this must be the
evolute required.
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ExXAMPLES.

175. (1) From a point O situated in the plane of a plane
curve, radii vectores are drawn to different points of the curve,
and on each one a distance is laid off from O inversely propor-
tional to the length of the radius vector; to determine the tan-
gent at any point of the locus of the points thus obtained.

(2) Take any two curves in the same plane, and consider as
corresponding points those at which the tangents are parallel;
draw through a fixed point lines equal and parallel to those
uniting corresponding points of the two curves. Prove that a
tangent to the locus of the points thus obtained is parallel to the
tangents at the corresponding points of the given curves, and
that any arc of this curve is the sum or difference of those which
correspond to it upon the given curves.

(3) From a point O radii vectores are drawn to a given curve,
and each is extended beyond the curve by a constant length.
Prove that the normal to-the curve on which the extremities of
the radii vectores lie, the normal at the corresponding point of
the given curve, and the perpendicular through O to the radius
vector .of the point, have common intersection.

176. To show the power of this method of infinitesimals, we
shall give an investigation into the nature of what is called the
Brachistochrone, or Curve of Quickest Descent. The problem is
a famous one, and the solution below is in effect the one given
by James Bernouilli, and is very much simpler and more ele-
mentary than the usual analytical solution which requires the
use of the Calculus of Variations.

The problem is, given two points not in the same horizontal
plane, nor in the same vertical line; to find the curve down
which a particle moving without friction can slide in the least time
Jfrom the upper point to the lower, the accelerating force being
terrestrial gravitation.

Let us first consider a simpler question: To find the path of
quickest descent on the hypothesis that it is to consist of two
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straight lines intersecting on a given horizontalplane,
assuming that the particle moves down each line
with a uniform velocity equal to the mean velocity
with which it would actually descend the line in
question. It is easily seen that both lines must
lie in the vertical plane containing the two given
points. ’

Let PNP' and PMP' be two paths of equal time
from P to P'. Then the required path must lie
between them. If we suppose them to approach,
contiuing still paths of equal time, the required
path of quickest descent will be the limiting posi-
tion of either of them. Let v be the mean velocity
of a particle sliding from P to M; then, by Art.
115, v will also be the mean velocity of a particle
sliding from P to N.

Let v, be the mean velocity of a particle sliding from M to P',
supposing that the particle started from M with the velocity
actually acquired by sliding down PM; then v, is also the mean
velocity of descent from N to P', by Art. 115. As we are going
to make the paths PMP' and PNP' approach indefinitely, MN
is an infinitesimal. Draw the arcs N8' and MR' from P and P’
as centres, and the perpendiculars NS and MRE. On our hy-
pothesis, the time of descent from P to 8’ equals time of descent

from P to N,

and time of descent from M to P' equals time of

descent from R' to P'; hence, as time PMP' equals time PNP',
the time of descent from S’ to M equals time from N to R!,

or

whence

and

SH_ NE
v v,
SM_ v
NR' ™ v’

[
limit % = limit 'v% H
timit S — Jimit SH,

NR' NR
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S_M= cosPMN= Ccos¢ .
NR ™ cos PMN cosg,’

.., CO8¢ WY
Mt_—=l' t_..
hence ' i o8y, imi %

Let the angles made with the horizontal by the two portions of
the required path be 8 and 6;, and the mean velocities down the
two portions of the required path be v and v;. Then

cosf v cosf coséb,

r
cost, v & v oA

Let us now consider a path of quickest descent, consisting of
three rectilinear portions intersecting on given
horizontal planes, all the other conditions Py
remaining as before. Let PRSP' be the
required path. It is easily seen that PRS /06,
must be the path of quickest descent under
the given conditions from P to S; so that S/ 6

cosf cosb, P

v “m

RSP’ must be the path of quickest descent from R to P' under
the given conditions, so that

cosf, _ o8 b,
U Vg ’

v, v, v, being mean velocities down PR, RS, and SP', respec-
tively.

Suppose now that the number of rectilinear portions of the
broken line of descent is indefinitely increased, each portion will
decrease indefinitely in length, and the path will approach a
curve as its limiting form. The mean velocity down each por-
tion of the polygonal path will approach as its-limit the actual
velocity at the corresponding point of the limiting curve; the
angle made by each portion with the horizontal will approach the
angle made by the curve with the horizontal: hence our limit-
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ing curve, which is obviously the required brachistochrone, must
be of such a nature that the cosine of the angle it makes at each
point with the horizontal shall be proportional to the velocity the
particle will possess on reaching that point. Let us take the

X N 0 P/

7

horizontal and vertical lines through the highest given point as
our axes, and take the positive directions of X and ¥ as the usual
negative directions. The velocity acquired by a particle sliding
from O to @ is, by Art. 118, the velocity it would acquire falling
from N to Q, that is, /(2gy). We shall have then, as the de-
fining property of the required curve,

cost __
V(2gy) 5

where K is a constant ; or cost=Cy},

C being some constant. The cycloid is a curve possessing this
property, as is easily seen. :
¥ T

2r

P,
\
Y
Y
T

T 0 N




CHar. X.) INFINITESIMALS. 181

We have costr=8inPT'N= 12’_1%7;

, but, by geometry, PN=+/(27y);

V(2ry) y\__1
hence CoST = = J(E‘) =J@n yh Q.E.D.

The converse, that every curve possessing the property

cost = Cyt

s a cycloid, can be proved analytically by finding its equation,
as follows : —
Let the required equation be

y=Jsr.
We know that tanr = D,y,
1 _op
V1+(D.y)?

1= C*[1+(D.y)"],

COST =

’_ l—o’y
(Dly) - C’y ¢

_ 1

and assume y=a—acosd.

D
D:y=E;LZ9‘
and we have -
1— 1— cos@
a’sin’0 _ 2 ___l4cosb
(Dyx)? 1—cosd 1— cosé
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_ a’sin’0(1—cos0)  a*(1— cos’0) (1— cosb)
(Dyz)* = 1+ o080 = T+ cosd

= a*(1— cosd)?,
Dyz=a(l— cosd),
z=af,(1— cosV)=al — asind +C,
when 2=0,y=0,and 0=0;
hence C=0,
and our equations are 2z = af — asind
y=a—acosl }

the familiar equations of a cycloid ; and the brackistochrone is
an inverted cycloid with its cusp at the higher of the given points.
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CHAPTER XL
DIFFERENTIALS.

177. A DERIVATIVE has, in effect, been defined as the limit of
the ratio of infinitesimal increments of function and variable.
Consequently, in getting a derivative, we can replace the incre-
ment of the function by any quantity differing from it by an
infinitesimal of a higher order.

For example : in getting D,a*, we find

4(2)? = 2 4 2z dz + (dz)® — o = 224w 4 (4z)2.

2x 4z differs from d4(2*®) by (dz)?, which is of the second order
if we take dz as the principal infinitesimal, and 2z4x may be
substituted for 4(a*) in getting D,«*, which then equals

limit | 2zdx — limit [22] = 2.
dr=0| 4z Je=0

In our old problem of getting the derivative of an area we can
_ use this same principle.

Take dz as the principal infinitesimal, then 44 and Jdy are of
the first order, by Art. 149. 44 differs from the rectangle y4x

Ay '

A4

0‘5 Ax

by less than the rectangle dxdy, which is of the second order, by
Art. 147, Ex. ; and we have
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D, A= limit (447 _ limit [y4z]_
de=0| Jzx de=0| Jx |~

Take the problem of the derivative of an arc.

¢

0 z Ar

Let 4z be the principal infinitesimal ; then 4s is of the first
order. ds differs from its chord V/(dz)® + (4y)? by an infinitesi-
mal of a higher order, by Art. 165. Hence we have

D, g limit [ 48] limit V(dzY+(dy)]_ Limit ENY
=97 4op=0| 4z | Jx=0 dz Ax=0 dz) [
D,s =1+ (D.y)*.

178. In general,
D, iy limit [f(w + d) —fw] .

de=0 dx
therefore W =D, fr+-e,

where ¢ is an infinitesimal, by Art. 7.
f(x+4dx)— fe=D, fr. dz + cd2.

But f(x + 4x) — fx is the actual increment of fx, caused by the
increment 42 of . edx is of as high an order as the second, if
we take dz as our principal infinitesimal ; and we get the impor-
tant result that D, fz. 4z differs from the actual increment of fr
by an infinitesimal of a higher order, and may consequently be
used in place of 4fr in any case where we have to deal with the
limit of the ratio or of the sum of such increments. This quan-
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tity, D, fx. 4z is called the differential of fr, and is denoted by
dfx, d being a symbol for the word differential.
By the definition of differential,

de =D,xdx = Jx.

This definition may now be restated as follows : The differen-
tial of the independent variable ts the actual increment of that
variable. The differential of a function is the derivative of the
JSunction multiplied by the differential of the independent variable ;

or formulating, dx = J=,

dy=D.,y.dz,
y being a function of z.
It is to be noted that a differential is an infinitesimal, and that
it differs from an infinitesimal increment by an infinitesimal of a
‘higher order.

179. Since dy=D,y.dx,
dy
d_w_Dzy

As, by Art. 78, D,z= Dl,y’
D= dz
dy

Consequently, if two quantities are so connected that either is a
function of the other, the derivative of either with respect to the
other is the actual ratio of the differential of the first to the differ-
ential of the second.

180. The differential notation has the advantage over the
derivative notation, that it is apparently simpler, and that the
formulas in which it is used are more symmetrical than those in
which the other notation is employed ; and although the differ-
ential is defined by the aid of the derivative, and the formulas
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for the differentials of functions are obtained from the formulas
for the derivatives of the same functions, there is a practical
advantage, after the formulas have once been obtained, in regard-
ing the differential as the main thing, and looking at the derivative
as the quotient of two differentials.

181. By multiplying each of our derivative formulas by dz,
we get the following set of formulas for the differentials of

functions.
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da =0;

d(ax) =adx; ||

d(z*) =na""'dz; '.
|

d(logz) =%; |

da* =a*loga.dz;

de* =e*dx;

dsin® =cosz.dzx;

dcosxr = —sinzx.dz;
dtanz =sec’z.dzx;
dctnz = —csc®z.dx;
dsecx =secztanz.dz;
desex = — cscxctnzx.dr;

dversz =sinz.dz;

. dz
dsin"'g= ——_;
A=)
,_ _ _ dx ]
deos™lx = ——\/(l—x")’
. dx
dtan x_l_-{—a:”
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deot™ 'z = —-l—%;’;
B = D)
descle = —am%;
dvers"w:ﬁi—x’);

d(u+v+w+- ..... )=du+d'v.+dw+ ..... 3
d(uwv) = udv 4 vdu ;

a¥ _ vdu —udy
v e
dA =ydx;
ds  =V(dx)"+ (dy)*
The formula D.fy=D,fy.D,y

is no longer necessary, as it gives us

dfy=D,fy.dy= % dy =dfy, an identity.

ExXAMPLES.

Work the examples in Chap. IV. by the differential formulas
Jjust given, remembering that

dy
Dzy = d_x

182. The differential notation is especially convenient in deal-
ing with problems in integration, and leads to an entirely new
way of looking at an integral.
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Let y=2a%

and suppose that # changes from the value 1 to the value 5; to
find the whole change produced in y. Let x change by succes-
sive increments, each of which may be called 4 ; then the whole

change in y is the sum of the corresponding increments of y,
z=5

which we will indicate by = 4y. The whole change in y is the

z=1
actual sum of these infinitesimal increments ; it is then the limit

of their sum as 4z is indefinitely decreased, and each Jy decreases
2z=5

correspondingly ; that is, it is limit = 4y. But as we are deal-

z=1
ing with the limit of a sum of infinitesimals where the limit is,
from the nature of the case, finite, each term may be replaced
by any infinitesimal differing from it by an infinitesimal of a
higher order (Art. 162). Each dy may then be replaced by the
corresponding dy, and we get as the whole change produced in

z=5 z=5

the value of y, limit = d(2?) =limit &' 2zdz.

z=1 z=1

As y=a,
this change must be

[xz]nb - [”’]zﬂ =25—-1=24,

and we get the limit of the sum of a set of differentials appear-
ing as the difference between two values of the corresponding
function.

183. Suppose that in any fr we change z from , to , by
giving to « successive increments. The whole change, f, — f&o,
must be the sum of the partial changes produced by the incre-

ments given to x; or
=2,

S — fo, =2 dfe.
z=x
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If the increments given to x be indefinitely decreased in magni-
tude while sufficiently increased in number to still fill the gap
between x, and z;,

limit 5" =5
Sy —fro= g o = dfz=limit = dfz,
=%y =Ty
by Arts. 162 and 178,
=2,
= limit &' D, fx . dz.
&=y
Call D, fx= Fz,
then fr=/,Fx
=2,
and limit ' Fz.de =[ [, Frle=z, — [ /. F2)z=z,
=,

and the limit of the sum of a set of differentials is the difference
between two values of an integral. Such a limit is called a defi-

&,
nite integral, and is indicated by f', z, and 2; being the values

X
between which the sum is taken. 4s a definite integral is the
difference between two values of an ordinary integral, it contains
no arbitrary constant.

184. Regarding an integral as the limit of a sum gives a new
meaning to some of our old formulas. Take, for example, the
case of finding an area. Required the area bounded by the
parabola y* = 4z, the axis of X and any ordinate y,.

The area in question is the limit of the sum of rectangles of
which y4x may be taken as any one, and the sum is to be taken
between the values 0 and x, of z. We have then

. X=Xy =2y
A = limit £ ydz = limit X' ydx ;
=0 z=0

hence A= ?ydx,
0
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_—

Yo

x Ax T

y=2zh.

Zo 223 2t
A= 26/31:ld.v =[Tx]z=%—[-§]z=o= LR

185. We can now take up some new problems that could not
be conveniently approached while the integral was treated merely
as an inverse function, and we shall consider very briefly one
connected with the subject of centre of gravity.

The centre of gravity of a body is a point so situated that the
body will remain motionless in any position in which it may be
placed, provided this point is supported.

Suppose a heavy plane curve, of which equal areas have equal
weights, placed in a horizontal position. The tendency of any
particle to produce rotation about a given axis is the weight of
the particle multiplied by its distance from the axis. If the axis
passes through the centre of gravity, the sum of all these ten-
dencies must be zero, or the body would rotate.

Let us consider the centre of gravity of a segment of the pa-

rabola ¥ =2muz,

cut off by any double ordinate.
Suppose the parabola horizontal, and let X and ¥ be the coor-
dinates of the required centre of gravity. Inscribe in the parabola
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small rectangles having their sides parallel to the axis of Y.
The tendency of any one of these rectangles, as 4B, to produce
rotation about the ordinate through the centre of gravity, is its

/
1 |

AN

PNy

\

welight, which may be represented by its area, 2ydx, multiplied
by its distance from the ordinate in question. If the rectangle
were so narrow that we could regard its weight as concentrated
along its nearest side, this distance would be (z —X); and if we
decrease dx indefinitely, the required distance will approach this
as its limit.

The tendency of this rectangle to produce rotation is then,
roughly, 2y(x —X)d4x; and the smaller the value of Jx, the
nearer this comes to being an exact expression. The tendency

I:Il
of all the rectangles is 3 2y(x — X)dz. The smaller the rect-
z=0
angles, the nearer their sum comes to the whole area of the curve,
and we shall have as the tendency of the whole curve to rotate
=2y =
about CD limit 3 2y(x —X) 4z or f2y(x —X)dz; but as CD
=0 0

passes through the centre of gravity, this must equal zero.

723/(:1: —X)dx=0.
1
y=+/(2m2) ;
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hence 2?\/ (2ma) (z — X)dz =0,
of'&:; dz = Xo}:'cadz,
gof=§ Xu,

X= gw,_.

By similar reasoning, we find, as the tendency to rotate about
a line through the centre of gravity and parallel to the axis of X,

.;"(:c, —2)(y—Y)dy. This must equal zero.
%,
W ¥
—_— — 1 = M
_{:(wn 2m)(y Y)dy=0;

v

_/"(xly a:,Y_._yi.‘.y’ dy=0;

-, 2m
P vy Py P o,
[ 2 —aty- 8m 6m ll=-1/|—0’

xl’/l Yy, — yIY xl’/l .,y
T AtH 8m+ 6m —alt gt e Y =0
(3"3_2”)1'—0-

% 1751 — Yy
Y=0;

and (2x,,0) is the required centre of gravity.

Differentials of Different Orders.

186. As the differential of a function is by definition a new
function of the independent variable, we may deal with its dif-
ferential.

d(dy) is called the second differentiul of y, and is denoted by
@y ; d(dy) is called the third differential of y, and is denoted

by @®y ; and so on. d(a—'y)=d"y.
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In dealing with differentials of a higher order than the first, it
is customary to make the assumption that the differential, that
is, the increment (Art. 178), of the independent variable i3 con-
stant, since this assumption greatly simplifies the results, and is
always allowable when the variable in- question is really inde-
pendent, as we can then suppose it to change by equal incre-
ments.

187. Making the assumption that the differential of the inde-
pendent variable is constant, we have very simple relations be-
tween differentials and derivatives of different orders.

By Art. 178, dy=D,y.dz,
then d*y=d(dy)=D,dy.de=D,(D,y.dx)dz=D2y.dz,
as dx is a constant. It can be shown in the same way that
d*y=D.y.dz",
and that d*y=D y.dx".

It will be noticed that when dx is the principal infinitesimal,
dry is an infinitesimal of the nth order.
From the results just obtained, we get,

2., __ &'y
D: Y= d—:c’—’
D.’!/=%a
Ds“.'/= %’

and the differential notation is generally used in place of the
derivative, even in the case of derivatives of higher order than

the first ; but in using % for Dy, it must be kept in mind
that the two expressions are equivalent only when x is the inde-
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pendent variable. If, for example, 2 were a function of a third
variable, and were compelled to change in some particular way,
we could no longer assume that dz was constant, and the differen-
tial expressions for the derivatives would be much more compli-
cated.

188. Let us work out the second derivative of y without any
assumption as to the value of dx.

dy
D ’y= d—D'y = (21__23 = d—wd’y _dyd’z )
£ dx dx d=?

since % is an ordinary fraction, and its differential can be found

by the formula d:_: = v —udy

v

ExAMPLES.
(1) Show that

@yda® — dedyd®x — 3dzxd®yd*z + 3dyds®
o .

,D.a Y=

(2) If y=logz,

find d®y, d®, and d'y, assuming that z is the independent varia-
ble, and again making no assumption concerning 2. Compare
your last results with those obtained by letting z=sinz, and
taking « as the independent variable.

189. In using differentials of higher order than the first, if
the assumption is made that the differential of the independent
variable is constant, it is better to indicate this by preserving
the derivative form, even when using the differential notation.
Take, for example, the formula for the radius of curvature of a

_[O+ @y

plane curve, p= Diy
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_ (dz’ + dy*)d
dz.dy

We should write it p= —

and not p=

if we wished to indicate that  was the independent variable. If
we make no such assumption, we must substitute for D2y the
value given in Art. 188, and we can then reduce the formula to

p= — L HIR
= T Gody — dyd's

190. The subject of differentials of different orders is closely
connected with that of finite differences or increments of different
orders.

If y is a function of z, and any fixed increment 4x is given
to x, there will be produced a corresponding increment dy in
the value of y; Jy, however, is not a fixed value, but varies with
the value of « considered. For example, if

y=2%
dy = 82 Jx + 3z (dz)? + (42)?,

and is obviously a function of x, and therefore will be changed by
changing z. The change produced in 4y by giving # another
increment, 4z, is called the second increment of y, and is indi-
cated by 4%y, and is a new function of z. The increment of the
second increment is the third increment 4%y, and so on; and in

general 4(ay)=dy.
If y=2a,
By = 6x(Jz)? 4 6(4dx)8.
The whole change produced in a function by giving several equal
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increments to the variable can be neatly expressed in terms of
successive increments.

y=r,
Sz +dz) =y +4y.
Add Jdx agaiﬁ, y becomes y + 4y, dy becomes dy + 42y, and we
have | S(x+2dz) =y + 24y + 4%y.

Repeat the operation, y becomes y -+ 4y, 2 Jy becomes 2(dy+ 42y),
4%y becomes 4%y 4+ L2y, and we have

S+ 8dx)=y+ 8dy + 32y + &3y.
In like manner,

S(@+4dx) =y + 4dy + 6 L2y + 482y + 2y.

ExXAMPLE.
Show that, if

f[w+(n—1)4w]=y+(n_1)4y+w 2y

$EDO=D(0=) py

and that, consequently, the second formula always holds.

191. If 4z is infinitesimal, we have seen that dy differs from
4y by an infinitesimal of a higher order, and therefore may be
used instead of dy in all cases where we are dealing with the
limit of a ratio or of a sum of such increments. The same rela-
tion holds between d*y and 4%y, and in general between d"y and
4"y, as we can prove by the aid of the following lemma.
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LEMMA.

192. If a function of x contains besides x a letter a, which is
independent of x, and becomes zero when a is zero, no matter
what the value of x, its derivative with respect to x will be zero
when a i3 zero.

For, since a, being independent of z, is treated as a constant
during the operation of differentiation, it can make no difference
in the result whether we give it any particular value before or
after that operation. But if we give a the value zero before we
differentiate, our function by hypothesis is equal to zero, and is
therefore constant, and its derivative is zero. Hence the lemma.

It follows that, if the function is infinitesimal when a 18 infini-
tesimal, whatever the value of x, its derivative with respect to x
will also be infinitesimal when a i8 infinitesimal.

As an example, consider the function log(1+ ax), which equals

zero when a=0.

dlog(l4az) _ a
dx T 14 ax

= 0 when a = 0.

193. Let Jz be infinitesimal. Then, by Art. 178,

ég = D zy + &
dz
where ¢ approaches zero as 4z =0. Increase =z by Jz, and the

increments of the two members of the equation will be equal.

Ay

—_= £} 4e.

e 4(D.,y) + 4e
. . 4y _ 4(D,y) , 4e

Divide by 4z : Gy~ 2o + )

limit | 4’y |_ pe, . limit [ 4],
4z=0 [(Jm)’]—D'y-'-dméO iz |’
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. limit [ de]_
but, by Ast. 192, lmit [Am]_ 0.
limit _D3y=CY by An. 187.
Hence, d=0 [(Aa:)] Diy="gg> ™Y
£y &y
(dz)* =@ t®

where a is infinitesimal, by Art. 7.

But dz = dx (Art. 178) ;
hence % = Py +a,
A’y = dzy + ada®.

d?y is an infinitesimal of the second order, by Art. 187. ada?
is of the third order; consequently, d®*y may be used in place of
4%y in problems concerning the limit of a ratio or of a sum.

By similar reasoning, it can be shown that

PSPy=Py+ ada®;
and, in general, that J4*y=d"y + ada®,

when 4z is infinitesimal.
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CHAPTER XII.
FUNCTIONS OF MORE THAN ONE VARIABLE.
Partial Derivatives.

194. Up to this time we have considered only functions of a
single variable, but a complete treatment of our subject requires
us to study functions of two or more independent variables.

Plane Analytic Geometry has furnished us with numerous ex-
amples of functions of the former kind ; Analytic Geometry of
Three Dimensions introduces us to functions of the latter sort.

The equation of a surface contains three variables, 2, ¥, and 2,
and any one may be expressed as a function of the other two;
and when this is done, the one so expressed may be changed by
changing either of the others, or by changing them both, as they
are entirely independent.

195. The derivative of a function of several variables obtained
on the hypothesis that only one of them changes, is called a par-
tial derivative; and, as all the variables except one are, for the
time being, treated as constants, a partial derivative can be ob-

tained by the rules for differentiating a function of one variable.

For example : D, 2*y = 2zy, if « alone changes ;
D,y =, if y alone changes.

22y is the partial derivative of z*y with respect to«, and 2? is
the partial derivative of «*y with respect to y.

We shall represent partial derivatives by our old derivative
notation, indicating ordinary or complete derivatives, when it is
necessary to make any distinction between the two, by the ratio
of two differentials.
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196. If a function contains two variables, its partial deriva-
tive with respect to either will generally contain both variables,
and may be differentiated again with respect to either of them.

Take «*y*.
D, 2y = 2xy*;
Dty =2
D, D, 2y =4xy;
D,2*y* = 227y ;
D, D2y = 4y ;
D,}x*y = 222,
Take u = zlogy.
D,u=logy;
D2u=0;
D,Dau="L;
y
DD .u= —-!-;
yﬂ
D,u=§;
1
D,D,u= 5;
2 L J
D}iu= —-y;;
1
D,D"u= —;’-

197. In both these examples we see that D, D,u is the same
a8 D, D,u, and in the second

D;)D,u= D,D}u.
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Let us see whether it is true in general that the order in which
the differentiations are performed is immaterial.

Let u=f(x,y).

To see if D,D,u=D,D,u.

D,u= limit [f(2y+4y) —f(@y)|_Szy +49)—f=@y) , .
T y=0 dy dy ’

by Art. 7, where ¢ is an infinitesimal and a function of z, y, and

dy. Similarly, D,u =f (= +Ax’:ﬁ—f (=y) + ¢,

where ¢’ is an infinitesimal and a function of z, y, and 4z.
D,D,u is equal to
limit [S(#+42.y+4dy) —f (= + d2,y) — f(2,y+dy) +f(w,y)]

dz=0 dz dy
+D,¢; [1]
D, D,u is equal to
limit [J(%+ 42,y +4y) — f(2.y +dy) — f(z + dz,y) + f(2,y)
dy=0 4z dy
+D,¢. [2]

The second expression for D,u is absolutely true, whatever the
value of 4y, and so is the expression for D,D,u. We may then
suppose 4y to approach indefinitely near zero, and D, D,u will
be equal to the limiting value approached by the second member
of [1]. The limit of ¢ as 4y approaches 0 is 0 ; therefore, by

limi
Art. 192, 4;’_‘;% [(D.c]1=0,
and D, D,u is equal to

it [f(a: + da,y + 4y) — f(2 + dz,y) — f (2,9 + dy) +f(x,y)]
dx dy ’

as both 4y and 4z approach 0.
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By similar reasoning, it may be shown that D, D, is this same
limit, and hence that D,D,u=D,D, u.

By applying this theorem at each step, we may prove that, in
obtaining any successive partial derivatives, the order in which the
differentiations occur is of no consequence.

For example, let us show that

D?!D,u=D,D}u;
D2D,u=D,(D,D,u)=D,(D,D,u)=D,D,D,u

=D,D,D,u=D,D}u.
Vv

198. In a previous chapter, we saw that, while the increment
of a function due to any increment of the variable is generally a
very complex expression, the differential of the function,which
differs from the true increment only by an infinitesimal of a
higher order than the increment of function or variable when
the latter is infinitesimal, is usually very much simpler, and yet
can be used instead of the true increment in many important
problems.

1t is worth while to see if we cannot get a simple expression
capable of replacing the infinitesimal increment of a function of
two or more variables in similar problems.

A function of two independent variables may be changed by
changing either of the variables alone, or by changing both.

Suppose we give to each variable an infinitesimal increment

of the same order. Let u=f(z,y).
Increase z by 4z and y by dy,

du=f(z+ dz,y + 4y) —f(2,y)-
Add and subtract f(z,y + Jy), and we get

du= f(x + 4=,y +dy) — f(=,y + dy) + f(=y + dy) — f(zy).
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S(z,y + dy) — f(x,y) is the increment of f(x,y) produced by
changing y alone, and differs from D, f(x,y)dy by an infini-
tesimal of a higher order than 4y, by Art. 178. In like man-
ner, we see that f(x+ d=z,y+ dy)— f(x,y +4dy) differs from
D, f(x,y + 4y) 4= by an infinitesimal of a higher order than 4z.

D, f(w%,y + 4y) is a new function of « and y, and any infinitesi-
mal change in y will produce in it a change of the same order,
by Art. 149. D, f(x,y + 4y), then, differs from D, f(«,y) by an
infinitesimal of the same order as 4y, and D_f(,y+ 4y) d=
differs from D, f(2,y) 4= by an infinitesimal of the second order.

D, f(»,y) 4x + D, f(x,y) 4y, or, using the differential notation
and remembering that 2 and y are both independent, D, f(x,y)dx
+D, f(z,y)dy differs from the true increment of « by an infini-
tesimal of a higher order than dz and dy, and therefore may be
used in place of 4u whenever the limit of a ratio or the limit of a
sum is sought. This is called the complete differential of «, and is
indicated by du ; hence, when

u=f(z,y), ‘

du = D, udx +D,udy.

ExaMPLE.
Prove that, if u = f(2,,2),
du %D,udm + D, udy + D, udz.
199. Partial derivatives may very often be used with profit in
obtaining ordinary or complete derivatives. Suppose that
y=Fz and z=F z and v = f(y,2) ;

% is indirectly a function of «, and we can therefore speak of the
complete derivative of w with respect to #, which we shall indi-

cate by %‘
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Jx 1z=2%
1= -

Scdutiorn : D,sin(y* —2) = 2y cos(y* — 2).
D,sin(f —z) = — cos(¥ — 2).

dy_1
d z
g:zz’
dz

dmn(df/: —2) 2!/005(!/' —2) — 2z cos(y* — 2)

_2y—=)oos(y'—2)

Confirm this result by expressing y and 2 in terms of x before
differentiating.

200. If u=f(x,y) and y =F=x,
the formula of the last article becomes

du =D, u+D u@
de dx
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ExaMPLES.

Q) u=2+y+2y

z = sinx Findd—u

y=¢€ Ans. —_(3y'+z)e‘+(2z+y)cosa;.
(2 u—log

Fmd—- Ans. %:l_ctnm.

y=sinz z

(8) u=tan~(ay) md@ ns, B4 _ETHY

4) u= sin“G) when z and y are functions of z. Find %
5) u =J(:'T:—z:> when 2 and y are functions of z. Find g—:

201. Higher derivatives of a function of functions of z can
be obtained by an easy application of the method suggested by
the formulas above.

For example : u=f(y,2),
y=Fu,
z=Fz,

required % '

d’u_;d"’_ 5. dy dz7 dy
@ i —[” u_+D'D'ud:c]d_:v
+[DDu +D2u ]%"’[D g:g-{-Dug

=D3u dy dz , ps &y @z
=D; ( >+2DDu % D} ( )+Dudm’+Dudw2.
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In obtaining this formula, since y and 2 are given functions of
ay
de
treated as constants in obtaining the partial derivatives with

xz, = and 7 are also explicit functions of z, and are therefore

respect to y and z; but now % is a function of (z,y and z) , hence

we must take also its partial derivative with respect to .

ExaMPLE.
Given u=Jf(2,y),
Cu du y="re
obtain o and — pet

Implicit Functions.

202. If, instead of having y given in terms of z, we have an
equation eonnecting « and y, y is called an implicit function of

x, and i Y can be readily found by the aid of Partial Derivatives.

Suppose S(=y)=0,
to find g_:. Call f(2,y) u.
Then u=20;

hence %—: must also equal zero,

%:D,u+1),u%=0,

dy D,u
dz~ Dy
ExAMPLES.

. 1 dy
1) ar»—yev=0. Find -~.
O Y n dx
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Solution : D,u = max™-1,
D,u= — e™ — nye™,
dy —D,u__ maz™!
dz~ Du ~ (I+ny)e” i
or, ag ax™ = ye", '
_, mye™”
maz™~? =
dy my
and dx 1+ ny)x
o dy Yz
@) ;,+£—1_o Find dns. B 22
dy dy _ y'—zylogy
(8) #—y*=0. Find 2 ‘Ans"da:—x’—mylogz
(4) sin(zy)—mz=0. Find ¥
dx
() W+ ty+a=a
y
log(zy) +z =4’ Find %,
dx
log (2) + 2=
du_1(y'(z—y)  2(zz—1) )
Ans. — z).
dz = (m(w+y)+w(mz+l)

203. We can get %;’l/ by the aid of the formula of Art. 201,

remembering that

&y
da?

du
ng_o

=Dju +2DDu Y+ Dju (-'/)'+D,udil/=

dx’o’
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dy D.u
i~ Dy
2. 3 D,u 2, D, u &y
Diu 2( D, D’u)+1), (D’ )4-1),.4Mz 0,
iy __ D2u(D,u)*—2D,D,uD,uD,u+D}u(D,u)?
d — (D,u)*
EXAMPLES.
dy d’y 2a*zy
1 I’ e e T e———————0
(1) ¥+7—3azy=0. Find 5. ns. o5 T =)

. . o d a&
2) 42 — =0. Fi vy ay
(2) #*+2axr’y—ay*=0. Find =~ and —3
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CHAPTER XIII
CHANGE OF VARIABLE.

204. If we use the differential notation, we have seen that
there is no need of distinguishing carefully between function and
independent variable, a single formula always giving a relation
between the two differentials by which either can be expressed
in terms of the other. This, however, is the case only when we
are dealing with differentials of the first order. A differential
of the second order or of a higher order has been defined by the
aid of a derivative, which always implies the distinction between
function and variable, and on the hypothesis of an important
difference in the natures of the increments of function and varia-
ble ; namely, that the increment of the independent variable is a
constant magnitude, and that, consequently, its derivative and
differential are zero.

If, in any function involving differentials of a higher order
than the first, we have occasion to change the independent va-
riable, we can no longer assume that the differential of the old
independent variable is constant, but must go back and replace
all the differentials of higher order than the first by values ob-
tained on the supposition that all the differentials are variable,
before we attempt the introduction of the new variable, vide
Arts. 187 and 188.

205. In any particular example in which it is necessary to
change the variable, the method just described can be easily
applied.

Take the differential equation,

Py

x’d?+xg—:+u=0,
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where « is the independent variable, and introduce y in place of
. Given y=logzx.

Our d?u here is the second differential of u taken on the assump-
tion that z is the independent variable, and this can be indicated
by writing it d.>u, and we have

dpu=D2udet=WLU—uBz 0 s 188,

dx
dy = d—:,
de = a;dy,

@'z = d(zdy) = xd’y + dady ;
but a’y=0,
as y is to be the independent variable,
hence d*z = dxdy,

dfu:M: @y — dudy ;

d
an =0y

x,ﬂ=d2u du
de? ~ dy* dy

hence we have —4+u=0.
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ExXAMPLES.

(1) Change the variable from  to ¢ in

dy =z dy g
@ —pa s

Given = cost. "
Ans. ZY 0.
ns. —mty=
(2) Change the variable from z to 6 in the equation,

@+ 2 E‘,}l_|_ y

@ T Trdd T aray

Given 0 =tan 'z.
Ans. + y=0.

(3) Change from z to ¢ in

Given x = cost.

@y _
Ans. o =0.

206. It is often desirable to change both variables simulta-
neously, and the principles already explained and illustrated
apply perfectly to this case. As an example, let us see what
our old expression for the radius of curvature of a plane curve
becomes when we change from rectangular to polar coordinates.

Here we have T=17Cco8¢ }
y=rsing

and we shall regard ¢ as the new independent variable. We
know that, if p is the radius of curvature,
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p _ [+ DT}
. D'y

We have seen, in Art. 189, that this may be written

o (@ ),
dxd?y

or, better still,  p— dgj_f_‘%

dz = — rsin ¢dg 4+ cos ¢dr,
dy = rcos ¢dg + sin ¢dr.

Since dg¢ is constant,

@z =— rcos ody® — 2sin ¢drde + cos ¢d*r, -
@y = — rsinpdy® + 2 cos pdrdy + sin pd?r,
(d2* + dy) = (Pdg? + AN,
dxdy — dyd?z = r*dy® — rded®r + 2dr*dg.

— (Pdgt+drt)t
r= Pdg® — rdpdir+ 2drde’

divide numerator and denominator by d¢?,

ExXAMPLE.

Find the radius of curvature of the circle r = cos¢.

Ans. p=4.

Vv
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207. A very simple example of change of variable is the fol-
lowing. Obtain the value of tant when polar coordinates are

dy
d. tant = -2,
use ) tant

T=7Cco8 @,
y=rsing,

dy _ _rcosgdy + singdr
dx~ —rsingdy + cos ¢dr'

A much simpler expression can be obtained for the angle made
by the tangent with the radius vector, which we shall call ¢.

tant — tang
tane = tal —_y) = 7
ne = tan(r — ¢) = T g’
tant — tang = - reecydp )
—7rsin ¢dy 4+ cos gdr
14 tanrtang = secpdr .
—rsingdy 4 cos ¢dr

rdg

tane = .

¢ dr

ExXAMPLES.

(1) Obtain this value for tanc from a figure by the aid of
infinitesimals.
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z=rcos¢}
y=rsing 4 s f
z+yd_dz r‘ . l: r §_"‘.~,~ T . ‘-
show that —:ill, ¢ " ’
a:d_y_y rdg” .- L
e T
and that dg=dd+dy¢
becomes

ds*=dr* 4+ *dg’.
Prove this last result from a figure.

(3) If z=a(1— cost) }
y=a(nt + sint)
&Py . d’y _ _mcost+1
express ot in terms of ¢. Ans. T T T asit
(4) Given

asindt

r= acos¢}
y=bsing
@7,
dx
express — —————

7 in terms of ¢. Hoog?
<y («*sin’p + b*cos’p)d
a2 . Ans. 3 .

208. The subject of change of variable can be easily treated,
by the aid of the principles established in Art. 88, without in-
troducing the idea of differentials.

D,y
Da’

\
n.(24) |
D2y=DDy_DxDzy_ Dz
= z Ed - D

L]

D.y:
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p. (P:¥\_ D.zDry—D,y D}z
D,z) ™ (Dx)*

D,xD2y—D,yDjx
D2 —_ = 2 S z x <
=Y D.a)*

If « and y are given in terms of z, we can calculate the values
of D,z, D,y, D2z, and D2y, and substitute them in these form-

ulas. Take Example (3), Art. 205.

& = cost,
(l—f)Ds’y—‘”.Dz!/=0,

D,y
D,x

D,y =

L]

D,z D2y —D,yD}tx
D2 — ¢ (3 (X [
Y (D)

D,z = —sint,

D22z = — cost,

Diy—= sint D2y + cost D,y
* ¥ — sin’t

1—a? = sin’t,

—sintD2y+ costD,y , costD,y
9 ¢ ¢ 9
sin’t — sin®t + sint 0,

D,2y= 0.

209. Suppose we have a function of two independent varia-
bles, and its partial dcrivatives with respect to them, and wish



216 DIFFERENTIAL CALCULUS. [ART. 209.

to introduce, in place of our old variables, two others connnected
with them by given relations.

For example: let 2 be a function of z and y, and let it be
required to introduce, instead of z and y, » and v, which are
connected with z and y by given equations. If the equations
can be readily solved so as to express u in terms of z and y, and
v 1n terms of x and y, we may proceed as follows : —

After the substitution, z is to be an explicit function of u
and v. Suppose the substitution performed. As u and v are
functions of z, z is indirectly a function of z. To get D.u, we
suppose y constant, so that  is for the time being the only inde-
pendent variable, and we can get D, 2, by Art. 199, which gives us

D,2=D,2D,u+D,zD,v
where all the derivatives are partial derivatives. In the same
way, . D,z2=D,2D,u+D,zD,v.

D.u, D,v, D,u, and D,v are found from the values of u and v
mentioned above, and are generally functions of z and y, and
D,z and D,z are at first obtained in terms of u, v, z, and y.
z and y must be replaced by v and v by the aid of the given
equations, and D,z and D,z are then in terms of » and v alone.
By extending the process, we can get D}z, D.D,z, D} z, “&e.,
in terms of » and v. -

For example : introduce » and v in place of 2 and y in the

equation "D}z2=D,}’.
Given U=x4+y
e
D,u=1,
D,v=1,
Du=1,

Dy=-1,
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D,z=D,z+ D,z,
D,z=D,z—D,z,
Djz2=D2z2+2D,D,z+ Dg?z,
D}z=D}z—2D,D,z+ D}z, ‘
D22+2D,D,z2+ D?z= DJ22—2D,D,z+ Dz, o
4D,D,z=0.

. D,D,z=0, the required equation.
T
~N PR

"7 210. If it is more convenient to express  and y in terms of
u and v at the start, we can proceed thus: z is explicitly a func-
tion of « and y, and if we regard v as constant for the time
belng, z is indirectly a function of the single variable x. Hence,

'D,e=D,2D,z+ D,2D,y;
in like manner, D,2=D,z2D,x+ D,z2D,y.

D,z, Dy, D,z, and D,y are found in terms of » and v, and
then by ehmination between the equations, we get D,z and D,z
n terms of u and v.

ExAMPLEs.
(1) Given T=7rCcosg
y=rsing }
z2=f(2y),
find D,z and D,z in terms of r and ¢.
Solution : D,z = cosg,
Dyz= — rsing,

D,y=sing,
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Dyy=rcosg,
D,z2=D,z2cos8¢ + D,2sing,

Dyz= — D,zrsing + D,zrcos¢.
Eliminate ; .

rcosy D,2=rcos’¢ D,z + rsingcosp D,z,
sing Dyz = — rsinfp D2 + rsingcose D,z;
D,z = .}. (rcos¢ D,z — sing Dyz)

D,z= % (rsing D,z + cos¢ Dy 2).

(2) Solve this same example by the method of Art. 209, using

the relations =24y
tany = ¥
z

211. If it is not convenient to solve the given equations be-
tween 2, y, u, and v, we can use the general method of either
of the preceding articles, obtaining our D, u, D,v, D,u, and D, v,
or our Dz, D,y, D,x, D,y, as follows: We have given

Fy(2.y,u4,0)=0 and Fy(z,y,u,v)=0.
Suppose y constant, then « and v will be functions of z; and,

by Art. 200, D.F,+ D ,F,D,u+ D,F,D,v=0 }
D,F;+ D, F,D, v+ D,FyD,v=0
From these equations we can obtain D, and D,v, and from two

cquations formed in the same way we can get D,u and D,v;
and a like process would give us Dz, D,y, D,x, D,y.
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EXAMPLES.

(1) If Vis a function of v, and

=gt
@&V, 1dv
2y =" = —.
show that D2V+ D2V e +v a0
(2) If Vis a function of v, and
=224y 423,
s
2 2 sy CV_ 24V
show that Dj2V+ DV+DV= dv’+vd .
3 If z=aelcosy and y=aelsing,

show that 3*D,?u — 22y D, D,u + 2* D*u = Dg*u + Dyu.
(4) Given &t er=3s,
er'4e*=l,
express D*u+ 2D, D,u 4+ D}2u in terms of s and ¢.

Ans. 8#D2u—2stD,D,u + ! DEu + 8D, u.+ tD,u.
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CHAPTER XIV.

TANGENT LINES AND PLANES.

J/

212. It is shown in Analytic Geometry of Three Dimensions,
that any equation F(z,y,2)=0 represents a surface,
and that two such eq‘t.mtions,

Fy(z,y,2)=0,
Fy(2,y,2) =0,

regarded as simultaneous equations, represent a curve in space,
the intersection of the surfaces which the equations separately
represent. .

By eliminating 2 between these two equations, we can express
y as an explicit function of «; and by eliminating y, we can
express 2z in terms of x: consequently, the equations of any
curve in space may be written in the form,

y=se }
z2=Fx

218. Let it be required to find the direction of the tangent
line drawn at any given point (xy,%0,2,) of the curve

y=ﬁv }
z2=Fz

Let (294 4z, yo + 4y, %+ 4z) be any second point on the given
curve. The equations of the line joining the two points are
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T—%_Y—Y_%—%
Az dy 4z’

by Analytic Geometry ; or

Y—3% _4dy
r—x, dz
z—z.,_f,
z—x dx

Let 4z approach zero, and the secant line approaches the re-
quired tangent as its limit, and this will have for its equations,

Y=% _ (Y
T— X dr)z =z,

=l
T— % dz:c=zob

or, writing them in a more symmetrical form,

z—x.,=3/—!/o_z—-zo,

1y
day da,

where, by Z_i:, we mean the value fil_i has when z = x,.

A plane through the given point perpendicular to the tangent
line is called the normal plane at the point in question. Prove
that its equation is

&=+ (Y= 30) 2+ (5= 29 2 =0.

EXAMPLE.

214. The helix is a curve traced on the surface of a cylinder
of revolution by a point revolving about the axis of the cylinder
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N .
at a uniform rate, and at the same time advancing with a uni-
form velocity in the direction of the axis.

We can easily express its equations by the aid of an auxiliary

z

-

v

P

2

0

(]

a/ =
Y

3
angle, the angle through which the point has rotated. Calling
this angle 6 and the radius of the circle a, we readily see that
&= acosd,

y=asinéd.

From the nature of the helix, 2 must be proportional to the

angle 0 ; hence §= k, a constant,
and z=kK9.
The required equations are then

Z=acosd

y=asind

" z=ko
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To find the tangent line and normal plane at (%,%0,%),
dy = acosddd,

dx = — asin 6dd,
%: —ctnf = -—Q,

dz = kdo,

dz k

dz asinéd

==X
y
The equations of the tangent are

a:-a:o=.'l—.'lo=z—zo
1

_n _k
Yo Y
T—2_Y—Y _2—2%
or = = 1
—% %o k (1
The normal plane is
Yo(@ — o) — Zo(Y — Yo) — k(2 — 20) = 0. [2]

The direction cosines of line [1] are, by Analytic Geometry,

— %
COB0 —=
RV R
=% ’
or 008a._.___\/(a2+k3),

_ %o
o8f = J@T Iy

k

=@ R’
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Cosy is, then, not dependent on the position of the point P;
therefore the helix has everywhere the same inclination to the
axis of the cylinder; or, in other words, it crosses all the ele-
ments of the cylindrical surface at the same angle. If, then,
this surface is unrolled into a plane surface, the helix will de-
velop into a straight line.

215. The equations of the tangent line to the curve
S(@,y,2)=0,
F(2,y,2)=0,

can be obtained in a very convenient form if we use partial
derivatives. We have, by Art. 199,

d d,  od
Y Df+Ds Y4 DrE=0
¢))
dF dy dz
—=D.F ) G F==0
i D,F+ D, o + D, %
. . dy dz
From these equations.we can obtain the values of i and o

Substituting these in the equations of Art. 213, and reducing,
we get

(@ — %0) Dz, [+ (¥ — %) Dy, S + (2 — 2) Ds, f= 0 }
(=) Dz F+ (y — yo) Dy F+ (2 — 20) D3, F =0

as the equations of the required tangent. The same result may
be obtained much more easily by substituting in (1) the values

dy dz . o
of o alxd o given by the equations in Art. 213.
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ExXAMPLES.
X Given z’+y’—az=0}
ar+22—at=0

equations of a curve, find the tangent at (2,o,2)) -
Ans. 2z + Yoy + 22 =20’ }

a(x— %)+ 2(z — 2)%=0
) Given the circle

e?+y+2E=a’
z4+2z2=a } -
: she tangent at (%,90,2%) - Ans. 2z + Yoy + %0z = a?
: ‘ x+2z=a }

3. The osculating plane at a given point of a curve in space
limiting position approached by a plane through the point
bwo other points of the curve as the latter approach indefi-
" near the given point.

‘To,Yos%o) i8 the given point, and we regard = as our inde-
ut variable, we can represent two other points of the curve
190) by

(%o + 4z, Yo + 4y, 2, + 42)
and (%0 + 242, Yo+ 24y + 82y, 2 + 242 + 4%%).

" Forming the equation of the plane through these three points,
dividing by 42°, and taking the limiting values as 4z approaches
zero, we shall get as the osculating plane,

(w—%)(%%—g—z%) (y— yo)( )+(z %’—0

EXAMPLE.

Obtain the osculating plane of the helix at (%yY0,%) -
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217. The tangent plane at a given point of any surface

S(23y,2) =0
can be found by the aid of the equations of Art. 215.
Let F(x,y,2)=0

be any second surface whatever passing through (4,¥0,%) -

The tangent line to the curve of intersection of the two
surfaces at the point (%g,¥%,%), that is, to. any curve through
(%0,Y0y2%) traced on the given surface, has for its equations

(2 — %0) Dz f + (y — %) Dy, [+ (2 — 20) D f= 0 }
(# — %) Dz F + (y — 40) Dy F + (2 — 20) D; F=0

It therefore lies in the plane represented by the first of these
equations, which must then be the required tangent plane,

(% — %) Dz, f+ (Y — %) Dy, [+ (2 — 20) D5 f= 0.

ExaMPLEs.
(1) Find the tangent plane to a sphere.
24+ Y +22=ad.
Ans. zez Yoy + 22 =0
(2) Find the tangent plane to an ellipsoid. -

2 v 8
¢+F+@_L
x z
Ans. 224 30 B0,
The normal line at (xy,Y0,2,) i8 easily seen to be

T—Zy_Y—Y_2—2
Daf~ Dyi~ Dyf
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CHAPTER XV.
DEVELOPMENT OF A FUNCTION OF SEVERAL VARIABLES.

218. To develop f(x + h,y 4 k) into a series arranged accord-
ing to the powers of h and k, where & and k are any arbitrary
increments that may be given. Let a be any variable, and call

so that h = ah, and k = ak;.

If now « and y are regarded as given values, f(x + k,y + k) is a
function of k and %, which depend on « ; and hence f(x + k,y + k)
can be considered a function of a. Call it Fa, and it may be
developed by Maclaurin’s Theorem, which gives

112 (ls
Fa=F0+aF'0+ = F"0+ L F"0 4 oo

a* ar+1
—_ F®™( Fo+Dgq,
il Y e “

When a=0,

Fa or F(x + hyy + k)= f(2,y).
Call Z + aby =2' and y + aky=y',
then Fu=f(2,y"),

d " ! dw' d !
Fla=YCY) _ D s,y) &+ Dy fiat ) L,
by Art. 199 ;
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Fla= D, f(2,y)+ K D, f(«'.y'"),
F'o=n D:f(wn'/) + levf(w,y) ’
which we shall write kD, f+ kD, f.

_dF'a

F'a o =hD,Flat+kD,F'a

= k' D f(',y") + 2k, D, D, f(@,y') + Kt D (', ¥')
F"a=MDf(<,y') + 3’k D.* D, f(«',y')
+ 8hk’D. D, f(«',y") + ks D, (', ¥').

In F”a and F"”a the terms have a striking resemblance to
the terms of the second and third powers of a binomial. Let
us see whether this will hold for higher derivatives. Assume
that it holds for the F™ a, and see if it holds for the F®*+Vq,

If F®a=htD f(2,y)+nh" kDD, f(«,y')

+ = 1;-1- l)' =k’ D2 D, f(o, y')

e 13) 'gn —2) h*=3k3 D=3 D Af(&, y') + ooe

FotVg=p D, F¥a+kD,F™a
= ' D f(2)y") + (0 +1) b D~ D, f(2', ')

+ (n -;—!l n hl"lkl’Dg'“—ll),"f(a?’, ) weeee
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If, then, the observed analogy holds for any derivative, it holds
for the next higher. It does hold for the third; it holds then
for the fourth, and for all succeeding ones.

F"0=h’Dz2f+ 2}y D, D, f+ kD2,

F®0=h"D f+ nh 5, DD, f

F®+Dgg = h+1 DA+ f(2 + 6h,y + 0k)
+(n+1)k*k, D2 D, f(% + 0hy + k) + -+t

By this notation we mean that x + 6k, y + 6k, are to be sub-
stituted for x and y after the differentiations are performed
We have then, remembering that

ahy=h and ak, =k,
S(z+ hyy + k)= f(z,y) + (RD.f+ vaf)

+ % (WD2f+ 2hkD,D,f+ ¥Djf)

1
(n+1)!

+ (n+1)2*kD,* D, f (= + 6h,y + k)

+ <h~+lp,-+! £ (% + Ohyy + 0F)

+ (n -;1 )7 =12 D 21D 2 f ( + 6h,y + 0k) + )

If we use (kD,+kD,)"f as an abbreviation for (A*Drf
4+nh*=kD*-'D, f+-....); that is, understanding that (hD,+kD,)"*
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is to be expanded just as though it were & binomial, and then to
have each term written before.f, we can simplify the above ex-
pression.

S(@+ by + k) =f(2,y) + (AD, + kD,) f(z-y)

+ 51" (*D.+kD,)*f(zy) + 51—, (hD, + kD,)*f(2,y) + -
+ L D+ kD) @)

1 A ntl
+ oD (hD, + kD,)**+'f (= + 0h,y + 6k),

which is Taylor’s Theorem for two independent variables.

If we let z=0and y=0,
we get S(h,k)=£(0,0)+ (D, + kD,) £(0,0)
+ - (AD, + kD,YF(0.0) + 3
or, changing & and % to « and y,
S(:y)=1(0,0)+ (=D, + yD,) £(0,0)

+ 2% (=D, +yD,)*f(0,0) + 51-' (#D, + yD,)3£(0,0) + ----

1 » 1 a1
+ 1 @D+ 4D 00 + o h s Dt D o),

which is Maclaurin’s Theorem for two variables.

ExAMPLE.
Transform Ax*+ Bxy+Cy*+ Dx+ Ey+ F=0

to (#,%) a8 a new origin, the formulas for transformation being

z=2+2,y=3%+Yy.
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Call our given equation f(z,y); we wish to develop
S(@+ 2% +Y)-
J@o+ 2, %0+ ¥') = f(@0Y0) + (#'De,+ y'Dy,) f(20:Y0)

1
+ gi (x'Dzo-,- y 'D, ”o) ’f (%,yo) 4 cevee

D, f(z.y)=24x + By + D,
D, f(z,y)= Bz +2Cy + E,
D} f(zy) =24,
D,D,f(zy)= B,

D/} f(z,y)=2C;

all higher derivatives are 0.

231

S(@o+ ',y + ¥') = Az’ + By, + Cyi' + Dxy+ Eyo+ F

+ (242, + Byo+ D)2'+ (Bry + 2090+ E)y

" 4 Ax'*+ Bx'y'+ Cy'?,  a familiar result.

219. By like reasoning, Taylor’s Theorem can be extended to
functions of more than two variables. For three variables it

becomes

S@+ by + Tz + 1) = f(2:92) + (1D, + kD, +1D,) f(®,,2)

+ o= (WD, + kD, +1D,)*/(z:9,2)

+ & (AD+ kD, + 1D f(&9.2) + e

1
+(n+l)!

(hD, + kD, +1D,)**+f(x + 0h,y + 0k,z + 6l).
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ExaAMPLE.
Transform 2*+4y*+2'—4zx4+6y—22—-11=0
to the new origin (2,— 3,1). Ans. 2+ +22=25.

Euler's Theorem for Homogeneous Functions.

220. A homogeneous function of several variables is one of
such a nature that, if each variable be multiplied by some con-
stant, the function is multiplied by a power of that constant.
The order of the function is the power of the constant by which
it is multiplied.

For example : 2*+ 2y — 3* is homogeneous of the second or-
der; for, if we change « into Az and y into ky, our function
becomes ¥*(«* + 2y — y*), and is multiplied by the second power

of k. SinxT—zy is homogeneous of the zero order; for, if we

multiply # and y by %, the function is unchanged ; that is, it is
multiplied by A°.

Let f(x,y) be a homogeneous function of = and y; then, no
matter what the value of g,

S(z +92,y + qy) =S (2.y) + 9(«D, + yD,) f(=.y)
+ &L @D+ 4D,y f(@ ) + -

+1

+ (m +1)!
but f(z + g2,y + qy) = [ (1+ ¢)2,(1+ @) y]= (1+ 9)*f(2,y)

by the definition of a homogeneous function.

(#D.+yD,)"*' f(z + g6,y + q6y);

Call S(=yy) = u, and we have
(1+9)*u=u+9(D, +yD,)u + & @D, +yD,)'u

+ % (a;D. + yD')’u 4 eeee
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As this equation must hold, no matter what the value of g,
the coefficients of like powers of ¢ in the two members of the
equation must be the same. Equating them, we have

u=u,
(=D, + yD,)u = nu,
(@D, +yD,)*u=n(n—1)u,
(@D, +yD,)*n=n(n—1) (n—2)u,
(@D, +yD,)"u=n(n—1)(n—2).(n —m+1)u;

and these equations are Euler’s Theorem.

ExAMPLES.

Verify Euler’s Theorem for second and third derivatives when

u=2"+y® and when u = sin™! %.
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CHAPTER XVIL

MAXIMA AND MINIMA OF FUNCTIONS OF TWO OR MORE
VARIABLES. .

221. If we have a function of two variables u = f(z,y), and
JS(@o + kYo + k) — f(0,90)<O0 for small values of %, and k, no
matter what the signs and relative magnitudes of these values,
u is 8 mazimum for the values zy,y, of  and y. If f(zo + kYo + k)
— f(%0%)>0 under these same circumstances, u is a minimum.
By Taylor’s Theorem,

S(@+ koo + k) — f(%0Yo) = (hD; + kD,) f(%0:Y0)

+ 57 (A, +kD,)* @+ th.yo+ 0F).

If we take the values of & and k sufficiently small, we can always
make } (D, +kD,)* £ 2+ 6k, Yo + 6%) < (hD, + kD) f (za,%)
and then the sign of the second member will be the sign of
(hD, + kD,) f(20:¥); that is, of hDz uo+ kDy us, which evi-
dently depends upon the signs of % and k. In order, then, that
the sign of f(y + k,yo + k) —f(20,%) should be constant, — that
is, in order that for y,y, » should be either a maximum or a
minimum, — the terms AD, % + kD,« must disappear, no matter
what the values of  and & ; or, in other words, Dy, u, and Dy v,
must both equal 0. We get, then, as essential to the existence
of either a maximum or & minimum, the conditions

D,u=0,
D,u=0,

for the values of x and y in question.
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222. Carrying the development a step farther, and assuming
that Dzou., and D,,o Uy are zero,

@+ b+ B) = F(@nge)= o (hD, + kD, f (20
+ 57 (kD + kD,)* f(zo+ Ok + 0F).

As before, it is evident that for small values of 2 and %, the
sign of the whole second member will be that of the terms
3 (h’D,:uo+ 2th,°D,ouo+k’Dy:uo). Let us investigate this
carefully.. '

Let A= Dz:uo’
B= onDyo“m
C= Dy:"m

our parenthesis becomes 4h? 4 2Bhk 4+ Ck*; and for a maximum
or minimum the sign of this must be independent of the signs
and values of 2 and k.

AR 4 2Bhk + O = i(A’h’+2ABhk+ ACKS),

i(A*h* + 24Bhk + B'R — BRI + ACK),

= }1 [(Ah + Bk)* + (AC — BYK].
(Ah + Bk)? and & are necessarily positive. If AC — B?is also

positive, the sign of the whole expression will be independent
of k and %, and will be positive if 4 is positive, and negative if

"Ais negative. If AC —B*=0, the result is the same;

but if AC — B? is negative, the sign of the parenthesis will de-
pend upon the sign and relative values of ~ and %, and we shall
have neither a maximum nor a minimum.
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223. To sum up:—
If D’ou“= 0
D’ouo"-: 0
t Uy iS & maximum.
,:u,,D,:uﬂ— (D%D,,ouo)’ =or>0

D,:uo<0 )

If ' Dzou0= 0

D,ouo =0

> Up i & minimum.
D2 Dyl ug— (D Dy 1)* = or >0

Dz:uo>0‘

ExAMPLES.

224. (1) To find a point so situated that the sum of the
squares of its distances from the three vertices of a given tri-
angle shall be a minimum. Let (23,), (%2%s), (%3ys) be the
given vertices, and («,y) the required point.

u=@—2)"+@—1)'+@—2)"+ @y —5)’
+(z— )"+ (y— %)’
is the function which we must make a minimum.
Du=2(x—x)+ 2(x—x;)+ 2(x — z5),
Dyu=2(y—4)+2(y—v) +2(y — %),
D3u=2+2+4+2=6=A,
D,D,u=0=B,
Difu=2+242=6=C.
‘We must make D,u and D,u both equal to zero.



~
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2(c—2) +2(x —25) + 2(x —23) =0,

o Bt Bt
-3

20— +2(¥y—v)+2(y—¥)=0,

y=nthts
I

AC— B*=36—0>0,
A=6>0.

Hence « is & minimum when

z="’1_+%=ﬂs and y=3ﬂ3g_+_-’£8,

The required point is the centre of gravity of the triangle.

(2) To inscribe in a circle a triangle of maximum perimeter.
Join the centre with each vertex and with the middle point of

each side. The angles between the three radii are bisected by
the lines drawn to the middle points of the sides. Call these
half-angles 6;, 65, 6.

a .
§-z—r=sm0,,

a = 2rsinb,,
b= 2rsiné;,,

c=2rsginb,,



238 DIFFERENTIAL CALCULUS. [ArT. 224.
20, + 203 4 20y = 2,
6+ O+ Oy ==, 1)
p=a+ b+ c=2r(sinb, + sinb, +.sin0,)

is the function we are to make a maximum, and is a function of
two independent variables, say 6, and 0, ; for we can regard 0; as
depending on 6, and 6, through equation (1). As r is a con-
stant, it will be enough to make
u = 8in 0, + sin 6, 4 sin a maximum.
Dy, u = costy + cos 03 Dg, 0 ;

for, since O+ 03+ Oy=m,

changing 6, without changing 6; will change 0,.

Dy, 05= —1;
hence Dg, u = cos 6, — cos b,.
¢ Deg,u = cos 6, — cos 0y,
for Dy, 0y= —1,
Dglu= — sin 6, — sin b,
Do, Dy, u.= — sin b,
Dgyu = — sin6; — sin b;.
Make Do u=0 and Dp,u=0.

cos b, — cosas=0}
cos 3 — cos b3 =0

0‘ = 0’ = 0'.



Crar. XVL.] MAXIMA AND MINIMA OF FUNCTIONS. 239
Substitute these values in Dgju, &c., and
Dgju= —2sin6, = 4,
DolDo’u = —gin6, = B,
Do:u = —2gin0,=C,

AC"" .Bz-_— 48in’01— Sin’01= 38in’01>0,

A= —28in6,<0, and % is a maximum.
Since 0y = O3 = b,
a=b=c;

and the required triangle is equilateral.

(8) To inscribe in a circle a triangle of maximum area.
Ans. The triangle is equilateral.

225. Very often it is unnecessary to examine the second de-
rivatives, as the nature of the problem enables one to determine
whether the value of the variables obtained by writing the first
derivatives equal to zero corresponds to maximum or minimum
values of the function.

ExaAmPLES.

(1) Required the form of a parallelopiped of given volume

and minimum surface. Ans. A cube.
4

(2) Required the form of a parallelopiped of given surface
and maximum volame. Ans. A cube.

(3) An open cistern in the form of a parallelopiped is to be
built, capable of containing a given volume of water, what must
be its form that the expense of lining its interior surface may be
& minimum ? :

Ans. Length and breadth each double the depth.
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CHAPTER XVII
THEORY OF PLANE CURVES.
Concavity and Convexity.

226. The words concavity and convexity are used in mathe-
matics in their ordinary sense. A curve is concave toward the
axis of X when it bends toward the axis; convex, when it
bends from the axis: that is, when in passing along the
curve its inclination to the axis of X decreases, the curve
is concave; when it increases, the curve is convex, sup-
posing that the portion of the curve considered lies above the
axis; if it lies below the axis, the rule just given must be re-
versed. We have seen that the tangent of this inclination,

which we have called 7, is equal to :_i’ If the curve is concave

and above the axis, r decreases as we increase z, tanz or Z_Z

a@
decreases, and a;z<0, by Art. 37. If the curve is convex,

d_a:’>0°

227. A point at which the curve is changing from convexity
to concavity, or from concavity to convexity, is called a point
of inflection. At such a point, %’/ is changing from a negative
to a positive value, or from a positive to a negative value, and
consequently must be passing through the value zero. To sum
up: if y=Je

is the equation of a plane curve, at any point corresponding to
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a
a value of z that makes W‘y< 0, the curve is concave towards
the axis of x, if above the axis; convex, if below. At any
@
point corresponding to a value of x that makes 'd?y >0, the

curve is convex towards the axis of z, if above the axis; con-
cave, if below. Any point corresponding to a value of x that

@y
makes = 0

is in general a point of inflection.
‘We have seen that the curvature,

_&y
T a7

_dy_’!"
14+ (=2

[+@)]

It is easily seen that at a point of inflection this value changes
sign. -

k=

228. These same tests for concavity, convexity, and inflec-
tion can be very simply obtained by the aid of Taylor’s Theorem.

Let y=fr

be the equation of a curve, and let it be required to discover
whether the curve is concave or convex toward the axis of X at
the point corresponding to the value

T=a.

Draw a tangent at the point in question, and erect ordinates to
the curve and to the tangent near the point of contact.

It is evident that the ordinate of a point in the curve minus
the ordinate of the corresponding point of the tangent must be
negative on both sides of the point of contact, if the curve is
concave, and positive on both sides of the point of contact, if the
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curve is convex. If the point is a point of inflection, this differ
ence will have opposite signs on different sides of the point.

//
'\]

N
CONCAVE. CONVEX, INFLECTION.

The equation of the tangent at the point corresponding to

r=a
is y—fa=fa(z—a), by Art. 28, [1].
Let z=a+h

in the equations of curve and tangent, and call the corresponding
values of y, y; and ¥, ; then

Y= fa + hf'a.

=fa+1fa+ 2 ot B et on),
by Taylor’s Theorem.

—¥= —f" + f'"(a + o).

If f"a does not equal zero, h may be taken so small that the
sign of y, — y, will be the sign of f"a

If f"a is positive this sign is positive whether & is positive or
negative, and the curve is convex. If f"a is negative, y, — y; is
negative both before and after = a, and the curve is concave.

If f"a=0 and f"a does not vanish, the sign of y, — y. will
change as the sign of & changes, and we shall have a point of
inflection.
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229. For example, let us see whether the curve
?+y¥=25
is convex or concave towards the axis of X at the point (8,4).
2zdx + 2ydy = 0. )
2da? + 2dy* + 2yd*y = 0. (2)

From (1) dy = _‘%“’.

Substitute in (2), 2d2®+ e + 2ydty =0,

¥
(@ + yP)de* + P d*y =0,
25d2* 4+ y*d?y = 0.

at the point (3,4); and the curve is concave.
Again, let us see whether the curve

y=z(x—a)* has points of inflection.

g—:= (z— a)' + 4x(z — a)?,

8(x— a)®+122(x — a)?,

=386(x— a)?+ 24x(x — a),

%l‘“ §l&

=96(z — a)+ 24x

&l"‘

@y _
‘Write = 0.
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and we get 8(z—a)*+122(x —a)’=0
or 2(x—a)®+ 3z(x—a)*=0.
One root is r=a;

divide by (z — a)?, and
2x — 2a + 3x=0.

= % is toe remaining root.
If v=22
5

% does not equal zero, and we get a point of inflection.

If r=a,
@
=0

%’f does not equal zero, and the point is not a point of inflection.

ExAMPLES.
2
(1) I1f y—m,

there is a point of inflection at the origin, and also when
z=ta+/(3).

N

there is a point of inflection when 2 = ‘c-;g.
e

3 It xt =logy,

there is a point of inflection when = 8.
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4 If ay = a’logg,

there is a point of inflection when x = ael.

Singular Points.
v

280. Singular points of a curve are points possessing some
peculiarity independent of the position of the axes. Such points
are, —

’ Points of inflection (Art. 228);
Multiple points ;

Cusps ;

Conjugate points ;

Points d’arrét ;

Points saillant.

Bl ol ol

231. (2) A multiple point is one through which two or more
branches of the curve pass. If only two branches pass through

~ F

. DOUBLE POINT. OSCULATING POINT. CUSsP. CUSP.
[ ]
CONJUGATE POINT. POINT L’ARRRT. POINT SAILLANT.

the point, it is a double point. A double point at which the .
branches of the curve are tangent is an osculating point.

(3) An osculating point where both branches of the curve
stop is a cusp.

(4) An isolated point of a curve is a conjugate point.
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(5) A point at which a single branch of a curve suddenly stops
is a point d’arrét.

(6) A double point at which the two branches of the curve

stop without being tangent to each other is a point saillant.
Multiple Points.

232. At a multiple point, the curve will in general have more
than one tangent, and therefore % will have more than one value.
Let ¢=0
be the equation of the curve in rational algebraic form.

d_l/=— (x4
dc~ D,p '

by Art. 202. For any given values of zand y, D,¢ and D, ¢ will
have each a definite value, as they are rational polynomials ; and

g—z will have but one value, unless D,¢ and D,¢ are both zero,

in which case % = g, and is indeterminate ;
hence, our fundamental condition for the existence of a multiple
point is D,¢g=0 and D,p=0.

To determine :_.Z in that case, we differentiate numerator and

d Djl¢+ D,D,y Z—Z
denominator, a—z = — = 1)
D.D,¢+ D} ¢ d—:
Clearing of fractions gives us

2
D}y (j—g) +2D.0,9 % 4 D2p=0, @
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a quadratic to determine Z_Z Unless (1) is still indeterminate,
that is, unless D,*¢, D, D, ¢, and D,?¢ are all zero, we get two
values of Z_Z, and the point is a double point.

If Z—Z is still indeterminate, we differentiate (1) again, and get

dy\* dy\? d
Dy (d—i) +38D,D/¢ (d—Z) +3D2D,p 72 + Do =0,

to determine % We have then three tangents at the point,

which is a triple point.

233. If the values of Z_: obtained from Art. 232 (2) are equal,

the two tangents at the double point coincide, and the point is
an osculating point or a cusp; and we cannot tell which except
by actually tracing the curve in the neighborhood of the point.

If the two values of % are imaginary, no tangent can be

drawn at the point, which is then a conjugate point.

A point d’arrét or a point saillant can be discovered only by
inspection when attempting to trace the curve; they occur only
in transcendental curves.

ExAMPLE.

284. To investigate the existence of multiple points in thé
curve 2 — a2+ a*y:=0.
D,¢ = 42 — 2ax,
D, ¢ =24y,

D2 =122%— 2a.
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D.D,g =0,
D¢ = 2a’,

D,¢ and D,y must equal zero.

w—%’z=0

if z=0orifz=4—2_.
v(2)
2a’y=0 ify=0;
hence z must equal zero, and y equal 0,

or x and y=0;

L,
=*7®

but (:l: —\/‘(’—2),0) is not a point of the curve; therefore we need

consider only (0,0). In this case,
D=2¢ == 2a’7

Dz = 2a?,

d 2
2a? (d—Z) —2a*=0,

d 2
-
%=ih

and the origin is a double point of the curve, the two branches
making with the axis of X angles of 45° and 135° respectively.
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ExAMPLE.
235. Consider ?—y=0.
D,y =32,
D,y = —2y,
D}¢ = 6z,
D.D,¢=0,
Dio=—2.

Make 82=0 and — 2y =0.

as the only point we need

We get z=0
consider here.

y=0
In this case, D2yp=0,
D, D,y =0,

Djig=—-2.

-+(g)-o

ay
< =+%0.
T +
The values of % are equal, and the origin is an osculating point,
both branches being there tangent to the axis of X.
Since y=2a

it is easily seen that the curve lies to the right, and not to the
left, of the origin, whieh is therefore a cusp.



250 DIFFERENTIAL CALCULUS. [ArT. 236.

ExaAMPLE.
236. b —2* 4+ ay? = 0.
D, ¢ = 2bx — 327,
D, ¢ = 2ay,
Dl2o=2b— 6z,
D.D,¢=0,
D}o=2a,
2bx — 32* =0
2ay =0 }
z=0
}is to be considered.
y=0
At this point, D2 =20,
D,D,¢ =0,

D}y =2a,

2
2a(‘c§—Z) +26=0,

dyy_ =
dz) ~ a
If b and a have the same sign, :l.l_i is imaginary, and the origin

is a conjugate point; a result that can be easily verified by ex-
amining the equation.

EXAMPLES.

(1) Show that the curve y=xlogz has a point d’arrét at the
origin.
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z
14+ ¢!
origin, and find the directions of the tangents at that point.

(2) Show that the curve y = has a point saillant at the

(8) Show that (y —)?=2® and (y — «*)® = 2* have cusps at
the origin.

(4) Show that (zy+1)2+(x—1)3(x—2)=0 has a cusp at
the point z =1. '

(5) Show that 2*—aa’y —axy®*+a’y?*=0 has a conjugate
point at the origin.

(6) Find the singular points in the following curves: —
+z+1)'=(1—2)*;
Y—azy+2=0;
y=28—2a;

¥+ @ + 2 (az — by) = 0.

Contact of Curves.
237. Let y=fr and y=Fx
be the equations of two curves. If
fa= Fa,
the curves intersect at the point whose abscissa is a. If, in
addition, Fa=f"a,

the tangents at this point of intersection coincide, and the curves
are said to have contact at the point in question. If

fo=Fa, Fla=f'a, and F'a=f"a,
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the curves have contact of the second order at the point. If
Fa=fa, Fla=f'a, F'a=f"a, etc., FMa=f"Mq,

the curves are said to have contact of the nth order at the point
whose abscissa is a.
Contact of a higher order than the first is called osculation.

238. The difference between the ordinates of points of the
two curves having the same abscissa and infinitely near the
point of contact, is an infinitesimal of an order one higher than
* the order of contact of the curves.

Let z=a+ 4z,
n=J(a+4z),
and Yy, = F(a + 4z),

E:ﬁ)_"l;l' FO+Y(a + 04z),

y2=Fa+AzF'a+%a:)sF"a+ ..... +(——:¢F""a

(dz)+?

nt 1)' F"““’(a+ 01‘_1“;).
n :

+

If the curyes have contact of the nth order,
Fa = fa,
‘F'a=f'a, etc., FMa=f™gq,

(Jx)n+l

(1! [f™*V(a+ 04x) — F**+V(a+0'42)],

N— Y=
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which is infinitesimal of the (n 41)st order, if Jx is an infini-
tesimal. It follows, then, that the order of contact indicates
the closeness of the contact; that is, the higher the order of
contact of two curves, the less rapidly they recede from each
other as they depart from the point of contact.

289. Let it be requiied to find the equation of the circle having
contact of the second order with the curve

y=rz at the point (2,,%,).

Let a and b be the coordinates of the centre, and r the radius
of the required circle. Call (X,Y) any point of the required
circle, then its equation is

—a)!+(¥—b)'=
By our conditions, <%>x = (%) ,
=z, z=2

()ez (@),
axs X=2z, dx’x:zl,

dY X—oa a
but i
v -3
(§) sy
-
dX’ (¥=bv)*
(ﬂ) =T
dX! X=zl (3/1— b)a’
hence (dy) _h—-a
dx z=xz; n— b N

(%) z=: (3/1——7:))3
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From these equations, and
(@m—a)'+(m—0)'=

we can get the required values of a, b, and 7.
Dropping accents, for the sake of simplicity,

2 \}
—b=—[—"Y,
' (d’y)

da®

z—a =<d,_”y>‘ B,
do?

substituting in (x—a)+(y—-0b)’=

GrEe- s
dao? do? .

(- )

Bl

]

Ly
&t

~

r==%

which is the familiar value of the radius of curvature of
y=re

at the point (z,y). Hence, our osculating circle is that circle
having contact of the second order with the gwen curve at the

point in question. \/
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ExampLEs.
(1) Inthe curve y=a'—42®—18a%,
show that the radius of curvature at the origin is gl.

(2) Find the parabola whose axis is parallel to the axis of

Y, which has the closest possible contact with the curve y=§

at the point where z = a. Result. ( _ g)9=g (y _ %)

(3) Prove that, if the order of contact of two curves is even,
they cross each other at the point of contact; if odd, they do
not cross. '

Envelops.

240. If the equation of a curve contain an undetermined
constant, to different values of this constant will correspond
different curves of a series. Such an equation is said to contain
a variable parameter, the name being applied to & quantity which
is constant for any one curve of a series, but varies in changing
from one curve to another. For example: in the equation

(@—a) +yt=r%

let a be a variable parameter; then the equation represents a
series of circles, all having the radius », and all having their
centres on the axis of X.

A curve tangent to each of such a series of curves is called an

envelop.

241. Two curves of such a series corresponding to two differ-
ent values of the parameter will in general intersect. If they are
made to approach each other indefinitely, by bringing the two
values of the parameter nearer together, their point of intersec-
tion will evidently approach the enveloping curve, which then
may be regarded as the locus of the limiting position of a point
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of intersection of any two curves of the series as the curves are i
made to indefinitely approach. From this point of view the
equation of an envelop is easily obtained.

Let S(@,y,a) = 0 1)
be the given equation of the series of curves, a being a variable
parameter. S(@,y,a+da)=0 (2)
will be any second curve of the series. The equation

S(@ya +Ja) — f(z,y,0) = 0 3

represents some curve passing through all the points of intersec-
tion of (1) and (2) by the principle in Analytic Geometry: ¢ If
u=0 and v= 0 are the equations of two curves, u 4 kv = 0 rep-
resents a curve containing all their points of intersection, and
having no other point in common with them.”

J(@:y,a + da) — f(2,y,2) =0
da

is equivalent to (3). If, now, da be decreased indefinitely,

mto [f(%y,awa) f(x,y,a)]

or Daf(x’yaa) =0, (4)

contains the limiting position of the point of intersection of (1)
and (2). Let (2',y") be this point, and therefore any point of
the required locus. Since (z',3') is on (4), and also on (1),

D.f(#,y',a)=0 and f(z',y',a)=0;

we can eliminate a between these equations, and we shall have
a single equation between z' and y', which will be the equation
of the required envelop.
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242. For example: let us find the envelop of
(2—a)'+y' = =0,
e being a variable parameter.

D,f=—2(z—a)=0.

r—a=0.
Eliminating a between (1) and (2), we get
y’—rs":o’

257

(1)

(2)

the equation of a pair of straight lines parallel to the axisof X,

as the required envelop.

243. When dealing with the properties of evolutes, we proved
that every normal to the original curve must be tangent to the
evolute. We ought, then, to be able to find the evolute of any
curve by treating it as the envelop of the normals of the curve.

Let Yy =fx

be the equation of the original curve

Y—%=— (g—“y”)usz — %)

is the equation of the normal, or

() w0 +e-a=0.

, is the variable parameter,

Dy f= ‘f";_?{;' W —90) — (%:)’_1 o,

+(2)

y=y°+d’—yo’

dag

1)

2
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difo dy,\’
()]

@Yo
dwOS
but Yo =20,

and we must eliminate 2, and y,, by the aid of these three equa-
tions, to obtain the equation of the evolute. These equations
are the ones obtained by a different method in Art. 93.

ExAMPLES.

(1) Find the envelop of all ellipses having constant area, the
axes being coincident. A
Result. A pair of equilateral hyperbolas.

(2) A straight line of given length moves with its extremities
on the two axes, required its envelop.  Result. at4 yt=at.

(3) Find the envelop of straight lines drawn perpendicular to
the normals to a parabola y® = 4ux at the points where they cut
the axis. Result. y*=4a(2a —x).

(4) Circles are described on the double ordinates of a parab-
ola as diameters. Show that their envelop is an equal parabola.

(5) Find the envelop of all ellipses having the same centre,
and in which the straight line joining the ends of the axes is of
~ constant length. A Result. x+y==xc.

(6) Show that the envelop of a circle on the focal radius of an
ellipse as diameter is the circle on the major axis.
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The Method of Least Squares.

With Numerical Examples of its Application. By GEORGE C. CoM-
STOCK, Professor of Astronomy in the University of Wisconsin, and
Director of the Washburn Observatory. b5vo. Cloth. viii + 68 pages.
Mailing Price, $1.05; Introduction Price, $1.00.

THIS work contains a presentation of the methods of treating

observed numerical data which are in use among astronomers,
physicists, and engineers. It has been written for the student,
and presupposes only such mathematical attainments as are usually
possessed by those who have completed the first two years of the
curriculum of any of our better schools of science or engineering.
Especial care has been taken to apply all of the leading principles
of the method to numerical data selected from published observa-
tions, and to give the computations in full, so that they may serve
the inexperienced computer as models.

It has been, throughout, the author’s purpose to so present the
subject that a working knowledge of the method, based upon an
appreciation of its priuciples, may be acquired with a moderate
expenditure of time and labor.

Peirce’s Elements of Logarithms.

‘With an explanation of the Author’s Three and Four Place Tables. By
Professor JAMES MiLLS PEIRCE, of Harvard University. 12mo. Cloth.
80 pages. Mailing Price, 55 cents; Introduction, 50 cents.

THE design of the author has been to give to students a more

complete and accurate knowledge of the nature and use of
Logarithms than they can acquire from the cursory study com-
monly bestowed on this subject.

Mathematical Tables Chiefly to Four Figures.

‘With full explanations. By Professor JAMES MILLS PEIRCE, of Harvard
University. 12mo. Cloth. ;dmhn ing Price, 45 cents; Introduction, 40 cents.

Elements of the Differential Calculus.

‘With numerous Exatrw es and Applications. Designed for Use as a Col-
lege Text-Book. By W. E. BYERLY, Professor of Mathematics, Harvard
University. 8vo. 273 pages. Mailing Price, $2.15; Introduction, $2.00.

HE peculiarities of this treatise are the rigorous use of the
Doctrine of Limits, as a foundation of the subject, and as
preliminary to the adoption of the more direct and practically con-
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venient nfinitesimal notation and nomenclature; the early intro-
daction of a few simple formulas and methods for integrating; a
rather elaborate treatment of the use of infinitesimals in pure
geometry; and the attempt to excite and keep up the interest of
the student by bringing in throughout the whole book, and not
merely at the end, numerous applications to practical problems in
geometry and mechanics.

Elements of the Integral Calculus.

Second Edition, revised and enlarged. By W. E. BYrRrLY, Professor of
Mathematics in Harvard University. 8vo. xvi+383 pages. Mailing
Price, $2.15; for introduction, $2.00.
THIS work contains, in addition to the subjects usually treated
in a text-book on the Integral Calculus, an introduction to
Elliptic Integrals and Elliptic Fuuctions; the Elements of the
Theory of Functions; a Key to the Solution of Differential Equa-
tions; and a Table of Integrals.

The subject of Definite Integrals is much more fully treated
than in the earlier edition, and in addition to the new matter,
mentioned above, a chapter has been inserted on Line, Surface,
and Space Integrals. The Key has been enlarged and improved,
and the Table of Integrals, formerly published separately, has
been much enlarged, and is now bound with the Calculus.

John E. Clark, Prof. of Mathe- | of results, make it useful above all
matics, Sheffleld Scientific School of
Yale University: 1 thought very
highly of the first edition of the
work, and have frequently recom-
mended it to my pupils. The addi-
tions to the present edition seem to
me most judicious and to greatly
enhance its value for the purposes
of university instruction, for which
in several important respects it seems
to me better adapted than any other
American text-book on the subject.

A.8.Hardy, Prof. of Mathematics,

other works of its class.

W. C. Esty, Prof. oy Mathematics,
Ambherst College, Amherst, Mass. :
Its value is greatly increased by the
additions. It is a fine introduction
to the topics on which it treats. It
may well take its place beside the
treatises of Todhunter and William-
son, as one of the best of hand-
books for students and teachers of
the higher mathematics.

‘Wm. J. Vaughn, Prof. of Mathe-
matics, Vanderbilt University : It is

Dartmouth College: As a text-book, | pleasing to see the author avoiding,
it is the most.valuable work I have. | and in some cases leaving out of
Its form and general arrangement, |sight, the old ruts long since worn
especially in regard to the grouping  smooth by, our teaching fathers,
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A Short Table of Integrals.

Revised and Enlarged Edition. To accompany Byerly’s Integral Cal-
culus. By B. O. PEIRCE, Jr., Instructor in Mathematics, Harvard Uni.
versity. 32 pages. Mailing Price, 15 cents. Bound also with the Calculus.

Byerly’s Syllabi.

L d
By W. E. BYERLY, Professor of Mathematics in Harvard University.
Each, 8 or 12 pages, 10 cents. The series includes, —

Syllabus of a Course in Plane Trigonometry.

Syllabus of a Course in Plane Analytical Geometry.

Syllabus of a Course in Plane lnaMic Geometry. (Advanced Course.)
Syllabus of a Course in Analytical Geometry of Three Dimensions.
Syllabus of a Course on Modern Methods in Analytic Geometry.
Syllabus of a Course in the Theory of Equations.

Elements of the Differential and Ini‘egral Caleulus.

With Examples and Apglications. By J. M. TAYLOR, Professor of
Mathematics in Madison University. 8vo. Cloth. 249 pages. Mailing
Price, $1.95; Introduction Price, $1.80.

HE aim of this treatise is to present simply and concisely the
fundamental problems of the Calculus, their solution, and
more common applications.’

Many theorems are proved both by the method of rates aud that
of limits, and thus each is made to throw light upon the other.
The chapter on differentiation is followed by one on direct integra-
tion and its more important applications. Throughout the work
there are numerous practical problems in Geometry and Mechanics,
which serve to exhibit the power and use of the science, and to
excite and keep alive the interest of the student.

The Nation, New York: It has|all that is necessary has been said.

two marked characteristics. In the
first place, it is evidently a most
carefully written book.... We are
acquainted with no text-book of the
calculus which compresses so much
matter into so few pages, and at the
same time leaves the impression that

In the second place, the number of
carefully selected examples, both of
those worked out in full in illustra-
tion of the text, and of those left
for the student to work out for him-
self, is extraordinary.
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Elementary Co-ordinate Geometry.

B{ 'W. B. SMrTH, Professor of Physics, Missouri State University. 12mo.
Cloth. 312 pages. Mailing Price, $2.15; for introduction, $2.00.

WHILE in the study of Analytic Geometry either gain of

knowledge or culture of mind may be sought, the latter
object alone can justify placing it in a college curriculum. Yet the
subject may be so pursued as to be of no great educational value.
Mere calculation, or the solution of problems by algebraic processes,
is a very inferior discipline of reason. Even geometry is not the
best discipline. In all thinking, the real difficulty lies in forming
clear notions of things. In doing this all the higher faculties are
brought into play. It is this formation of concepts, therefore, that
is the essential part of mental training. And it is in line with this
idea that the present treatise has been composed. Professors of
mathematics speak of it as the most exhaustive work on the sub-
ject yet issued in America; and in colleges where an easier text-
book is required for the regular course, this will be found of great
value for post-graduate study.

Wm. @. Peck, Prof. of Mathe-|mirably arranged. Tt is an excellent
matics and Astronomy, Columbia |book, and the author is entitled to
College : 1 have read Dr. Smith's Co- | the thanks of every lover of mathe-
ordinate Geometry from beginning | matical science for this valuable con-
to end with unflagging interest. Its | tribution to its literature. I shall
well compacted pages contain an im- ' recommend its adoption as a text
mense amount of matter, most ad- book ia our graduate course.

Elements of the Theory of the Newtonian Poten-
tial Function.

Bﬁy B. O. PEIRCE, Assistant Professor of Mathematics and Physics,
arvard University. 12mo. Cloth. 154 pages. Mailing Price, $1.60 ;
for introduction, $1.50.

HIS book was written for the use of Electrical Engineers and
students of Mathematical Physics because there was in English
no mathematical treatment of the Theory of the Newtonian Poten-
tial Function in sufficiently simple form. It gives as briefly as is
consistent with clearness so much of that theory as is needed be-
fore the study of standard works on Physics can be taken up with
advantage. In the second edition a brief treatment of Electro-
kinematics and a large number of problems have been added.
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Academic Trigonometry : Piane and Spherical.

By T. M. BLAKSLEE, Ph.D. (Yale), Professor of Mathematics in the
University of Des Moines. 12mo. Paper. 33 pages. Mailing Price,
20 cents; for introduction, 15 cents.

THE Plane and Spherical portions are arranged on opposite pages.
The memory is aided by analogies, and it is believed that the
entire subject can be mastered in less time than is usually given to
Plane Trigonometry alone, as the work contains but 29 pages of text-
The Plane portion is compact, and complete in itself.

Examples of Differential Equations.

By GEORGE A. OSBORNE. Professor of Mathematics in the Massachu-
setts Institute of Technology, Boston. 12mo. Cloth. vii+50 pages.
Mailing Price, 60 cents; for introduction, 50 cents.

SERIES of nearly three hundred examples with answers, sys-
tematically arranged and grouped under the different cases,
and accompanied by concise rules for the solution of each case.

Selden J. Coffin, lately Prof. of | Its appearance is most timely, and it
Mathematics, Lafayette College : | supplies a manifest want.

Determinants.

The Theory of Determinants: an Elementary Treatise. By Pauvr H.
Hanxus, B.S., recently Professor of Mathematics in the University of
Colorado, now Principal ~f West Hig(l): School, Denver, Col. 8vo. Cloth.
viii + 217 pages. Mailing Price, $1.90; for introduction, $1.80.
THIS book is written especially for those who have had no pre-
vious knowledge of the subject, and is therefore adapted to
self-instruction as well as to the needs of the classroom. The
subject is at first presented in a very simple manner. As the
reader advances, less and less attention is given to details.
Throughout the entire work it is the constant aim to arouse
and enliven the reader’s interest, by first showing how the various
concepts have arisen naturally, and by giving such applications as
can be presented without exceeding the limits of the treatise.
William @. Peck, Prof. of Mathe-| T.W. Wright, Prof. of Mathemat-
matics, Columbia College, N.Y.: A |ics, Union Univ., Schenectady, N.Y.:
hasty glance convinces me that it is | It fills admirably a vacancy in our

an improvement on Muir. mathematical literature, and is a
(Aug. 30, 1886.) very welcome addition indeed.
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Analytic Geometry.

By A. S. HARDY, Ph.D., Professor of Mathematics in Dartmouth College,
and author of Elements of Quaternions. 8vo. 'Cloth. xiv+239 pages.
Mailing Price, $1.60; for introduction, $1.50.

TH[S work is designed for the student, not for the teacher.

Particular attention has been given to those fundamental con-
ceptions and processes which, in the author’s experience, have been
found to be sources of difficulty to the student in acquiring a grasp
of the subject as a method of research. The limits of the work are
fixed by the time usually devoted to Analytic Geometry in our
college courses by those who are not to make a special study in
mathematics. It is hoped that it will prove to be a text-book which
the teacher will wish to use in his class-room, rather than a book of

reference to be placed on his study shelf.

Oren Root, Professor of Muthemat-
ics, Hamilton College: It meets quite
fully my notion of a text for our
classes. I have hesitated somewhat
about introducing a generalized dis-
sussion of the conic in required work.
I have, however, read Mr. Hardy’s
discussion carefully twice; and it
seems to me that a student who can
get the subject at all can get that.
It is my present purpose to use the
work next year.

John E. Clark, Professor of Mathe-
matics, Sheflleld Scientific School of
Yale College : 1 need not hesitate to
say, after even a cursory examina-
tion, that it seems to me a very at-
tractive book, as I anticipated it

would be. It has evidently been pre-
pared with real insight alike into the
nature of the subject and the difticul-
ties of beginners, and a very thought-
ful rcgard to both; and I think its
aims and characteristic features will
meet with high approval. While
leading the student to the usual use-
ful results, the author happily takes
especial pains to acquaint him with
the character and spirit of analytical
methods, and, so far as practicable, to
help him acquire skill in using them,

John R. French, Dean of College
of Liberal Arts, Syracuse Univers
sity: It is a very excellent work,
and well adapted to use in the reci-
tation room.

Elements of Quaternions.

By A. S. HArDY, Ph.D., Professor of Mathematics, Dartmouth College.
Second edition, revised. Crown 8vo. Cloth. viii +234 pages. Mailing

Price, $2.15; Introduction, $2.00.

HE chief aim has been to meet the wants of beginners in the
" class-room, and it is believed that this work will be found

superior in fitness for beginners in practical compass, in explana-
tions and applications, and in adaptation to the methods of instruc-
tion common in this country.
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Elements of Plane Analytic Geometry.

By JoaN D. RUNKLE, Walker Professor of Mathematics in the Massa-
chusetts Institute of Technology, Boston. 8vo. Cloth. ii + 344 pages.
Mailing Price, $225; for introduction, $2.00.

IN this work, the author has had particularly in mind the needs

of those students who can devote but a limited time to the
subject, and yet must become quite familiar with at least its more
elementary and fundamental part. For this reason, the earlier
chapters are treated with somewhat more fuluess than is usual.
For some propositions, more than a single proof is given, and par-
ticular care has been taken to illustrate and enforce all parts of
the subject by a large number of numerical applications. In the
matter of problems, only the simpler ones have been selected, and
the number has in every case been proportioned to the time that
the students will have to devote to them. In general, propositions
have been proved first with reference to rectangular axes. The
determinant notation has not been used.

Descriptive Geometry.

By Linus FAUNCE, Assistant Professor of Descriptive Geometry and
Drawing in the Massachusetts Institute of Technology. 8vo. Cloth.
54 pages, with 16 lithograpkic plates, including 88 diagrams. Mailing
Price, $1.35; for introduction, $1.25.

N addition to the ordinary problems of Descriptive Geomnetry,
this work includes a number of practical problems, such as
might be met with by the draughtsman at any time, showing the
application of the principles of Descriptive Geometry, a feature
hitherto omitted in text-books on this subject. All of the prob-
lems have been treated clearly and concisely. The author’s sole
aim has been to present a work of practical value, not only as a
text-book for schools and colleges, but also for every draughtsman.
The contents are: Chap. I., Elementary Principles; Notation.
Chap. II., Problems relating to the Point, Line, and Plane. Chap.
IIL., Principles and Problems relating to the Cylinder, Cone, and
Double Curved Surfaces of Revolution. Chap. TV., Intersection of
Planes and Solids, and the Development of Solids; Cylinders;
Cones; Double Curved Surfaces of Revolution; Solids bounded by
Plane Surfaces. Chap. V., Intersection of Solids. Chap. VI. Mis-
cellaneous Problems.
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Handbook of Arithmetic.

By G. C. SHUTTS, formerly Professor of Mathematics at the Potsdam
State Normal School, N.Y., now of the Whitewater Normal School, Wis.
12mo. Paper. vi+ 69 pages. Mailing Price, 30 cents; for Introd., 25 cts.

THIS is designed as a text-book for the method and teachers’

classes of normal schools and academies, and also as a help to
regular teachers in their preparation for class work. An outline
for a course of nine years, of forty weeks each, is presented. The
author’s aim is to unify the work of teaching arithmetic.

Arithmetical Reviews.

By J. L. PATTERSON, D.Sc., Mathematical Master in the Lawrenceville
School. 12mo. Paper. 26 pages. Mailing Price, 12 cents; Introduction
and Teachers’ Price, 10 cents.

HE object of this pamphlet is to present the essentials of arith-
metic in a form convenient for review.

Primary Number Cards.

Prepared by Miss ISABEL SHOVE, of the George Putnam School, Boston.
Printed on card-board, and boxed in sets of 60. Introduction Price, 25 cts.

THESE cards are arranged to cover the work of the second year

in the primary school. Each card has one example in addition,
subtraction, multiplication, and division, the simplest work being
on the first numbers. Most of the words have been taken from
the Primer and Second Readers.

Fractions.

A Teachers’ Manual of Objective and Oral Work. By HELEN F. PAGE,
State Normal and Training School, New Britain, Conn. 8vo. Boards.
iv + 47 pages. Mailing Price, 35 cents; Introduction Price, 30 cents.

'11HIS handbook has been prepared to help teachers who are try-
ing to present the subject of Common Fractions in a natural,
interesting, and, at the same time, systematic manner. Sample les-
sons are given for objective work in all the operations, the material
suggested being card-board dises and the measures yards, bushels,
gallons, ete. Problems abound, and a system of illustration of frac-
tional facts with color-diagrams is introduced. By means of this
system, & child may teach himself a great deal in a short time.

Pupils’ Edition: Containing over three hundred examples, illustrated
with color-diagrams. 8vo. Boards. 52 pages. Mailing Price, 35 cents;
Introduction Price, 30 cents.
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INTROD. PRICR,

ALLEN & GREENOUGH: Latin Grammar, . . . $r20
Ceesar (7 books, with vocabula.ry xllnstrated) . . L2§
Cicero (13 orations, with vocabulary, 1llustra.ted) .« . L2§
Sallust’'s Catiline . . . . . . . . . . . K
Cicero de Senectute. . . . . . . . . .50
Ovid (with vocabulary) . « e s « s . 140
Preparatory Course of La.tln Prose e« s+ o Y40
Latin Composition . . . . . . . . . . . 112
ALLEN . . . New Latin Method . e+ s e« .90
Introduction to Latin Composltlon e e e+ 90
Latin Primer . . . . . . . . . [
Latin Lexicon . . « .. .+ . 9O
Remnants of Early Latin . . Y &
Germania and Agricola of Tacitus. . . . . .00
BLACKBURN . Essentials of Latin Grammar . . . . . . . .7
Latin Exercises. . . e o v o o o o
Latin Grammar and Exercises’ (in one volume) . 1.00
COLLAR & DANIELL: Beginner's LatinBook . . . . . . . 100
Latine Reddenda (pape ‘} [
Latine Reddenda and Voc. (cloth) e e s e e 30

COLLEGE SERIES OF LATIN AUTHORS.

Greenough’s Satires and Epistles of Horace

(text edition) $o.20; (textand notes) . . . . . I.2§

CROWELL . . Selections from the Latin Poets . 1.40
CROWELL & RICHARDSON : Briof History of Roman Lit. (BENDER) 1.00
GREENOUGH ., Virgil: —

Bucolics and 8 Books of Zneid (with vocab.) 1.60

Bucolics and 8 Books of ZAneid (without vocab) 1.12

Last 6 Books of Zneid, and Georgics (withnotes) 1.12

Bucolics, Zineid, and Georgics (complete with notes) 1.60

Text of Virgil (com plete) . . « e e« 75

Vocabulary to the whole of Vlrgll e ¢+ + . 10O
GINN & Co. . Classical Atlas and Geography (c]oth) « s+ .« 200
HALSEY, Etymology of Latin and Greek . 1.12

KEEp . . . Essential Usesof the Moodsin Greekand Latin .25
KING . . Latin Pronunciation . . . . . . . . . . . .25
LEIGHTON, . Latinlessons . . . . . . . . . . . . . LI2

First Steps in Latin , . . & ¢ ]
MApviG . . Latin Grammar (by THACHER) . . . . . . . 2.25
PARKER & PREBLE: Handbook of Latin Writing . . . . . .50
PREBLE. . . Terence’sAdelphoe . . . . . . . . . . . .25
SHUMWAY., . Latin Synonymes . . . e e e+« e+ e+« 30
STICKNEY . . Cicero de Natura Deorum . . . . . . . . 1.40
TETLOW . . Inductive Latin L.essons . . . e ¢ s o o LI2
TOMLINSON . Meanual for the Study of Latin Gramma.r .« .20

Latin for Sight Reading e ¢+ « « « 10O
WHITE .W. Schmidt’s Rhythmic and Metric . . 2.50
WHITE Junior Students’ l.atin-English Lexicon (mor) 1.75

English-Latln Lexicon (sheep) . 1.50

Latin-English and Engush-Latin Lexicon ( sheep) 3.00
WHITON . . Auxilia Vergiliana; or, First Steps in Latin Prosody .15
8Six Weeks’ Prepara.tion for Reading Ceesar . .40

Copm sent to Teachers for Examination, with a view to Introduction,
on receipt of Introduction Price.

GINN & COMPANY, Publishers,
BostoN, NEW YORK, AND C:IICAGO.
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INTROD. PRICE.

Allen: Medea of Euripides . e . . . . 8100
Flagg: Hellenic Orations of Demost.henes . . . . 100
. Seven against Thebes . . . . . . . 100
Anacreontjecs . . . . . . . . . 35

Goodwin: Greek Grammar . . . . . . . . 150
Greek Reader c e e e e . . . 150

Greek Moods and Tenses . e« . . 150

Selections from Xenophon and Herodotus. . . 150

Goodwin & White: Anabasis, with vocabulary . . . . 150
Harding: Greek Inflection . e e e e . B0
Hogue: Irregular Verbs of AtticProse . . . . . 150
Jebb: Introduction to Homer . . . . . . .. 112
Kendrick: Greek at Sight e e e e e e e 15
Leighton: New Greek Lessons . . e . . . 120
ledell & Scott: Abridged Greek-English Lexicon. . . . 19
Unabridged Greek-English Lexicon . . . . 940

Parsons: Cebes’ Tablet . . . . P (]
Seymour: Selected Odes of Pindar . .. 140
Introduction to Language and Verse of Homer . 05

Homeric Vocabulary . 15

School Iliad, Books I. -III 31 25; Books I. -VI. . 160

Sidgwick:  Greek Prose Composition . . . . . . 150
Tarbell : Philippics of Demosthenes . . . . . 100
Tyler: Selections from Greek Lyric Poets . . . . 100
White : First Lessons in Greek .. . 120
Schmidt’s Rhythmic and Metric . . . . 250

Passages for Translation at Sight. Part IV. Greek 80

(Edlpus Tyrannus of Sophocles . . . . . 112

Stein’s Dialect of Herodotus . .. . . 10

Whiton: Orations of Lysias. . . . . . . . 100

College Series.

L

( Beckwith: Euripides’ Bacchantes.

Text and Notes, Paper, .95; Cloth, $1.25; Text only, .20.

D’Ooge: Sophocles’ Antigone.

Dyer:
Flagg:

Fowler:

Text and Notes, Paper, $1.10; Cloth, $1.40; Text only, .20.
Plato’s Apology and Crito.
Text and Notes, Paper, $1.10; Cloth, $1.40; Text only, .20.
Euripides Iphigenia among the Taurians.

Text and Notes, Pg&)er, $1.10; Cloth, $1.40; Text only, .20.
Thucydides, Book
Text and Notes, Paper, $1.10; Cloth, $1.40; Text only, .20.

Humphreys: Aristophanes’ Clouds.

Manatt :
Morris:

Perrin:

Text and Notes, Paper, $1.10; Cloth, $1.40; Text only, .20.
Xenophon’s Hellenica, Books L-IV.

Text and Notes, Pa}per, $1.35; Cloth $1.65; Text only, .20.
Thucydides, Book

Text and Notes, Paper, 81 .35; Cloth, $1.65; Text only, .20.
Homer’s Odyssey, ks L-IV.

Text and Notes, Paper, 81 10 Cloth, $1.40; Text only, .20.

Richardson: Aschines against Ctesiph:

Text and Notes, Pa; r,I $1. 10 Cloth $1.40; Text only, 20.

S8eymour: Homer’s Iliad, Boo

Smith:

Towle:

Text and Notes, Pa&fr, 81 10 Cloth, $1.40; Text only, .20.
Thucydides, Boo;
Text and Notes, Paper, $1.10; Cloth, $1.40; Text only, .
Plato’s Protagoras.

Text and Notes, Paper, .95; Cloth, $1.25; Text only, 20.

GINN & COMPANY, Publishers, Boston, New York, and Chicago.



BOOKS IN HIGHER ENGLISH.

: Intro. Price
Alexander: Introduction to the Study of Browning . $1.00
Allen: Reader’s Guide to English History . . . . 25
Arnold : English Literature . . .. . . 150
Bancroft : A Method of English Composxtion e e . . B0
Browne: Shakspere’s Versification . . . . . . 25
Cook : Sidney’s Defense of Poesy . . . . . .
Shelley’s Defense of Poesy . . . . . .
Fulton & Trueblood : Choice Readings . 150
Chart Illustrating Prmclples of Vocal ltxpressxon . 200
Garnett : Euglish ’rose from Elizabeth to Victoria .
Genung : Haudbook of Rhetorical Analysis . . .. 112
Practical Elements of Rhetoric . . e . 125
@Gilmore: Outlines of the Art of Expression . .. . 80
Ginn: Scott’s Lady of the Lake . . Bds,.35; Cloth, 50
Scott’s Tales of a Grandfather . Bds., .40; Cloth, .50
Selections from Ruskin . . . Bds, .30; Cloth, 40
Goldsmith : Vicar of Wakefield. . . . Bds,.30; Cloth, .50
Grote & Segur: T'he Two Great Retreats of History, Bds., .40; Cloth, .50
Gummere: ITandbook of Poetics . 1.00
Hudson : liarvard Shakespeare —20 Vol Ldltlon Cloth retaxl 25.00
10 Vol. Edition. Cloth, retail, 20.00
New School Shakespeare. Each Play, Pa. .30; cloth, .45
Essays on Education, English Studies, etc. .. 2
Text-Book of Poetry 'and of Prose. Each . . . 125
Pamphlet Selections, Prose and Poetry. Each . . A5
Classical English Reader . . 1.00
Johnson : Rasselas . . . . Bds " 30 Cloth, 40
Lamb: Adventures of U ]ysses . . . Bds,.25; Cloth, .35
Tales from Shakespeare . . . Bds, 40' Cloth, 50
Lockwood : Lessons in English . . . 112
Bryant’s Thanatopsis and Other Favorite Poems . .10
Minto: Characteristics of English Poets . . . . . 150
Manual of English Prose Literature . . . . 150
Montgomery: Buuyan's Pilgrim’s Progress . .
Heroic Ballads . . Bds 40 Cloth 50
Rolfe: Craik’s English of Shakespeare A .. 90
Scott : Gl]l:'.y Mannering, Ivanhoe, and Rob Roy.
. Bds 60; Cloth, .75
Lay of the Last Minstrel. . . Bds., .30; Cloth, 40
Quentin Durward . . . . Bds‘, 40; Cloth, .50
Talisman . . . . Bds, .50; Cloth, .60
Sprague: Milton’s Paradise Lost and Lycidas . 45
Irving’s Sketch-Book (Selections). Bds., .25 Cloth 35
Thayer: The Best Elizabethan Plays . . . . 125
Thom : Shakespeare and Chaucer Exammations .. . 100

AND OTHER VALUABLE WORKS,

GINN & COMPANY, Publishers,

BosToN, NEw YORK, AND CHICAGO.



SCIENCE AND HISTORY.

NATURAL SCIENCE.
INTROD. PRICH

Bverett: Vibratory Motionand Sound . . . . . $200
Gage: Elements of Physics . I . . 112
Introduction to Physical Science. . . . . 1.00
Hale: Little Flower-People e e e o 40
Hill: Questions on Stewart's Physies o e e e s 35
Journal of Morphology . . . « «+ (pervol) 6.00
Knight Primer of Botan; . . . . 30
Wimams: Introduction to Chemical Scionce . . . . .8
PHILOSOPHICAL SCIENCE.
Davidson: Rosmini’s Philosophical System e e e e . 280
Hickok: Philoeoplncal Works . e e e s 00
Ladd: Lotze’s Outlines of \Ietaphysic . o . 80
Lotze’s Outlines of Phi.osoph; of Religion . e .80
Lotze’s Outlines of Practical Philosophy . . . 80
Lotze’s Outlines of Psychology . . . . . 80
Lotze’s Outlines of Asthetics . . . . . .80
Lotze’s Outlines of Logic o 80
Beelye: Hickok’s Mental Science (Empirical Psychology) . 112
Hickok’s Moral Science . . . 112
POLITICAL SCIENCE.
Clark: Philosophy of Wealth . 1.00
Cla.rk & Giddings: The Modern Distributive Process . (retail) a5
Mac Our Government . . . .70
Pollt.lca.l 8clence Quarterly per "vol. ; 3.00
Seligman : Railway Tariffs and the Interstate Law . (retall 15
HISTORY.
Allen: Readers’ Guide to English History . . . . 25
Andrade: Historia do Brazil . o e e e 15
Fiske-Irving : Washington and His (‘ountry . . . . . 100
Halsey: Genealogical and Chronologlcal Chart . . 25
Journal of Archeeology . . . . (per vol) 5.00
Judson: Cesar’s Army e« « .« 100
Montgomery: Leading Facts of En, aﬁlish Hisbory e e . . 112
English History Re e N I T 60
Moore: Pll msand Puritans . . . . . « . 60
Myers: iseval and Modern History . . . o o i.ﬁg

Ancient History . RN

Copies sent to Teachers for Examination, with a view to Introduction,
on receipt of Introduction Price.

GINN & COMPANY, Publishers.

BOSTON. NEW YORK. CHICAGO.



\70 b el W - SO o J}lwu_ SE

4;“::: 9w . %GEMNM' NM{%,,.. ol o g “(

| w@(wm,.,umwwfw
f’i"""“ d‘% o l‘w XY yw, A~

Ay ) Q- C2- -2~ OU:
O 7o 'Ws\s r"vl M Yy z é“"""“’"" %WL,V
ﬂ,‘.l‘ L..A.LL.— uﬂk}xq‘, ‘)&\o— @AY w

X«: "':A—uh:.‘ M—M.’-t(** Yal
z2-2,28(v-v,)

MMy M (yax,)
M»‘

!
v v

(2)

()

7.-7.,. &1/(*’.",

'h h
M f«.;‘ £ 9 -"I’;’( h -r-'

v

(!) mut coulai. (2

7 s i . :
Min'--’i m"‘-.-ﬁ‘
» t 5

. - KA -
Aly - vy) ~ ./,;;{/.‘..A_(,, ,.g(z z,) ¢

- ! 1 -l - -,
(y = %)) ‘é‘(‘-t-"'lnl < * z, e
y’\(.,_ —-Z - A /
AI' [‘4 "'o)'- — (2‘1,) - 4]
At Az
Ay
u’i, - ¥ d
PN vYvul). e Y-, 'Jm(u q,“,_,_, (7_ zl)
T‘M.} - "é‘*\ ‘St':o "“‘"" ‘M
’oL«J AV fu L ‘ )
o (g, ke sl g (2o O
AN ’/C e 1 gy, Ay, AL’
dv"-':/.
ot
o
Az, -



S dmn

o~ RN

-

~ »

sl
”~ ’

M-y = &.m<l .(..w.
> .

. . u..%\

‘ﬂ-n’u.ﬁﬂhﬁﬁ_

-

P

S

.

s Moo, o T \xix\\

.N..l.ﬂv\c Wldl\XoJu\\

r,

.\Av\ﬂl 4\;\\ - —\VN fl‘f» o .m.,.b\.-v..

\z) == L Li(h)

v.. fom g vanuvul‘/... ) ... s
"

t..(..._ W b . Uo..
(1)

M.»\ - o ~N\

.

I POV Vak =%
e



£,
'l
; 7S]
bt 2\{ tl 4
) 4
\!z“ 3“% i o s
Bpge o 0 omr o
m o ";F% == :W gil
- S . > ;";*’
i N Y { O
F[ . f;$ a(?‘: .E_E
?~ P Y 2
}*«p. 34?:’ ??
% | rlé gk e
F ri* . 9%
| P
o % .
B B
W2, RC
74-& §\;.
%;“ I‘[;“
H*W?

[

}(F
M’t f.".\‘

- VY

oL

i‘;z Yy N







